
Version 2.0.3

dan farmer
zen@trouble.org

August 22nd, 2013

IPMI: FREIGHT TRAIN TO HELL
OR

LINDA WU & THE NIGHT OF THE LEECHES

Executive Summary
IPMI is a protocol mainly used to facilitate remote management of servers. Published by
Intel and created in conjunction with other major vendors it’s nearly universally
supported and is widely used for emergency maintenance as well as the provisioning and
rollout of applications, operating systems, and various other administrative tasks.

An embedded system called the BMC implements IPMI and lives on server
motherboards. It often (especially recent flavors) runs Linux and has its own
independent CPU, memory, and storage. The BMC also may provide remote web access
along with email capabilities, LDAP support, emulation of remote CDs and other media,
and a host of other capabilities. The BMC operates and controls the server at a very low-
level, and is mostly invisible to the operating system. Designed to operate even when the
server is powered off, anyone who has administrative access of either the BMC or IPMI
(they’re closely related) enjoys complete control of the server.

There are three classes of serious security problems with IPMI: the Intel specification,
the vendor’s implementation of the protocol and the BMC, and how it’s all used in the
wild by the end users. While none of them are individually showstoppers, when
combined they create a monumental security problem about as large as a digital Grand
Canyon. Unfortunately the issues are complex, involved, and unless one is versed in
those three issues the full extent of the overall problem will not be clear. This makes the
problems not only even more disastrous, but all the more poignant.

The IPMI specification has flaws that allow attackers to access passwords remotely as
well as grant system level access without any passwords at all. It also mandates that
passwords must be stored or processed in unencrypted form, a very unusual and unsafe
practice1 which means that anyone who compromises the BMC or has physical access to
one can uncover passwords used to secure your inner corporate sanctum. Very low-level
access to the server and its bus is mandated and may be used to compromise it at a very
low and nearly undetectable level.

Vendors frequently rebrand what is, at its core, IPMI – Dell has iDRAC, Hewlett
Packard iLO, IBM calls theirs IMM2, etc. – but they also add lots of features, insecurity,
and mystery to their implementations, along with enabling some, if not most insecure
options of IPMI as a default. The BMC’s security is marred by the number of programs
and functionality they jam in along with the slow patch times typical of embedded
systems. Owners can’t fix or patch BMC security problems because the vendors ensure
that only their own proprietary software to be used. There is almost no visibility to any
of the activity on the BMC, and currently there aren’t any forensics or security tools to
help with the situation; even backing up the firmware is disallowed. Most servers sold
even have vendor placed backdoors on their BMCs so that their support staff may gain
the access and control that you cannot. As a final straw: it appears that due to
architecture decisions it’s possible for an attacker to permanently compromise a BMC,
short of some unknown vendor trick or physically damaging the motherboard.

	 2	

Users tend to manage servers in very large collections that all share the same IPMI
password: groups of 100,000 servers or more are not unusual with very large hi-tech
organizations. While IPMI doesn’t force this behavior both the protocol and vendors
almost collude in making it very difficult to do anything else. And because of the
difficulty managing IPMI the passwords tend to remain unchanged a very long time,
often measured in years, which also makes any password compromise especially serious.
Any server that is compromised in a group may compromise all of the other servers.
This risk extends to de-provisioned servers, which might end up on eBay or an auction –
they probably still have your passwords on them.

In sum, you may not know it, but your goose may already be cooked and you’re simply
asking Intel and your server vendors to pass the orange sauce.

Table of Contents
Executive Summary	 ...	 1	
I.	 Background	 ..	 3	
II.	 The IPMI Protocol	 ..	 4	
III.	 Vendors: With Friends Like These….	 ..	 8	
IV.	 How IPMI has Been Used	 ...	 16	
V.	 BMCs gone Wild	 ..	 19	
VI.	 Security Proclamations	 ...	 20	
VII.	 Into You Like a Train (Conclusion)	 ..	 25	
Bibliography	 ...	 27	
I’d like to thank….	 ..	 27	

Note: there are so many different implementations, versions, vendors, and ambiguities
I’ve tried to make the writing clearer by putting many of the caveats and one-offs in
footnotes at the end of the work and out of the path of general reading.

When talking of vendor implementations I’ll often refer to the group I’m discussing as
“most servers” or at times “most vendors”. I’m referring to either sheer #’s, in terms of
market share and what’s out there (e.g. since most servers are sold by a small number
of vendors, it may be numerically just a handful of vendors I’m talking about, as I don’t
have #’s or data for a more complete understanding.) At times, however, I’ll extend my
proclamations to most vendors, since some things seem more universally true across
the board. In both cases there may well be exceptions, I’m only talking about what I’ve
personally seen and read.

And while I thank some very important people for help and reviewing my work (see the
acknowledgements at the end), any omissions, errors, falsehoods or whatnot are solely
my responsibility. It’s a sprawling topic, far too big to cover in these pages, but I’ve also
placed some additional background data, notes on vendors and specific
implementations, along with links, references, and the like at my web site:

http://fish2.com/ipmi.

	 3	

I. Background

By far the most popular OOB protocol today is the Intelligent Platform Management
Interface, aka IPMI, which communicates to a server via the service processor or
baseboard management controller (BMC.) 200 computer manufacturers are currently
on Intel’s Adopter’s List2 and it’s hard to buy a server that doesn’t have native support.

What most call IPMI is actually composed of four main specifications: the “Intelligent
Platform Management Interface (IPMI), Intelligent Platform Management Bus (IPMB),
IPMI Platform Management FRU Information Storage Definition, Intelligent Chassis
Management Bus (ICMB)”3. It was initially developed by Intel, Dell, HP, and other large
corporations; version 1.0 specifications published in 1998. Version 1.5, which introduced
networking and is still in wide use, came out in 2001, and version 2.0 was rolled out in
2004 (the last revisions being published June 20094.)

Despite version 1.5 being over a decade old an Internet-wide IPMI survey (see section 5)
revealed that of the more than 300,000 servers discovered, a whopping 63.1% didn’t
speak version 2.0. Version 2 does have backwards compatibility, but since virtually
every server sold today supports version 2 it’s a curious figure.

Like any good spy IPMI has a variety of aliases. Server and firmware vendors not only
add a wide variety of features but rebrand the label: Dell calls theirs iDRAC, Hewlett
Packard iLO, IBM IMM, etc., but in the end most of the core functionality is powered by
IPMI. Intel launched a similar effort for personal computers called Active Management
Technology (AMT) that shares many features with IPMI but for a variety of reasons I
don’t think it’s as dangerous5.

The most common use of IPMI is to monitor server physical health and status via its
sensors; temperature, memory errors, disk health, fan speeds, and the like may be
captured and associated alarms triggered when something is amiss. Vendors allow you
to reboot a server, change BIOS settings, install an operating system, or perform other
low-level management tasks.

From the start the BMC was designed to be resilient, and is able to communicate with its
server or with other computers even when the main network was down, the server power
is off, the operating system or disks crash, or when other catastrophic failures happen
(which is pretty cool if you think of it.)

Figure 1, courtesy of the Intel Development Forum, might help illustrate IPMI’s place in
the management stack. Computer management systems have long tried to tackle the
higher-level concepts of applications, operating systems, and the like, and something was
needed to deal with the low-level hardware issues. Supercomputers, virtual controllers,
clustered computers, etc. also use IPMI to spin up and down nodes on demand.

Figure	 1	

	 4	

Through efforts such as the Common Information Model (CIM) IPMI is providing its
services to higher and higher levels of abstractions in an effort to provide a unified
administrative interface. As a result, as well as the lower level tools support is available
for most popular scripting languages and web interfaces.

II. The IPMI Protocol

The IPMI specification was written when the performance of embedded systems were an
order of magnitude or more less than today’s computers, so some of IPMI’s design might
be understandable in that light. But times have changed, computers are far more
powerful, and even when created some of the design decisions are simply deplorable
with respect to security. The vendors, who usually turn on all functionality rather than
only enable a more restricted and secure set of options, only aggravate the problem.

Even if you’re using moderately secure options in your own environment, unless the bad
options are explicitly disabled you can still be vulnerable. I’ve seen many examples on
the Internet of experts counseling others on how to “fix” problems by explicitly
discarding security controls.

Other than optional password hashing the IPMI version 1.5 has no cryptographic
protection at all between client and BMC; the specification defines the RMCP (Remote
Management Control Protocol) as a simple UDP datagram driven protocol. As a result
it’s vulnerable to a plethora of network security attacks such as password sniffing,
network spoofing, connection hijacking6, Man-in-the-Middle attacks, and more.

Authentication has various options, and passwords may be sent in clear text7 or as
hashes, depending on the request and what the client and the server support. When you
set or change a user’s password the actual password is sent over the network in clear text.

The specification also allows remote information about the security posture to be gained
in a number of ways, but the mandatory IPMI “Get Channel Authentication Capabilities”
command, which may be done remotely, anonymously, and without authentication, will
give potentially dangerous details about a remote BMC including:

• Whether or not the anonymous user is active or not. IPMI defines as the
anonymous user as an account with a NULL (e.g. zero-length) name and
password. This account gives attackers a free login to a BMC with no
authentication.

• It also reveals if the “none” authentication is allowed. This is similar to the
anonymous account above, but in this case no password is required while a valid
username is needed order to login. While an attacker must know the account
name supporting “none” authentication, users will often simply use the default
accounts given by the vendor, so it’s a dangerous thing to let potential attackers
know about (obviously all accounts should ideally require a password to begin
with, but people being people…)

The “Get System GUID” command is another anonymous and remote command that,
while optional, is “highly recommended” in the IPMI specification (GUIDs are required
in the 2.0 protocol). The GUID, or Globally Unique Identifier, is supposed to be a unique
number that may be used to identify a system. While this might sound innocuous for
attackers or security scanners this is a real boon – one of the hardest problems of
network scanning is that of uniquely identifying potential hosts, nodes, or targets. An IP
address is a very poor identifier, and having a GUID allows the identification of
computers through an otherwise shifting or puzzling network topology. And since no
authentication is needed it’s simple to send a single network packet to re-identify a

	 5	

potential target; usually no further scanning is necessary to alert any defenders or
alarms.

While it has stiff competition, perhaps the worst problem with the IPMI protocol is
something that you must read between the lines to understand – the protocol
mandates either the clear text storage of the password on the BMC or to
have it recoverable on demand. Most modern password algorithms use a hashed or
salted and hashed password for authentication. IPMI instead uses a dynamic hash for an
authentication code to validate a request:

AuthCode = H(password + temporary session ID + challenge string+ password)

(where H(x) is a hashing function):

The challenge string and session ID are determined by the remote client and the
managed BMC prior to this request, and may change with any session request, and
without the clear text password at hand this hash could not be calculated. Some BMCs
appear to keep the clear text password on “secure” storage that is difficult to read after
the bootup sequence, but even then if an attacker has root8 access on the raw BMC
memory (or individual processes) is easily scanned for passwords.

This is simple to illustrate – here’s an example revealing the components of the hash
using ipmitool; the password is meaningless, but the username must be valid (color
coding is used to highlight the various regions of the text output):

$	 ipmitool	 -‐I	 lanplus	 -‐U	 ADMIN	 -‐P	 fluffy-‐wuffy	 	 -‐H	 192.168.0.69	 -‐v	 -‐v	 -‐v	 -‐v	 user	 list	

IPMI	 LAN	 host	 192.168.0.69	 port	 623	
[...]	
<<RAKP	 2	 MESSAGE	
[...]	

>>	 rakp2	 mac	 input	 buffer	 (63	 bytes)	

	 a4	 a3	 a2	 a0	 9e	 70	 37	 da	 6d	 4b	 e6	 a6	 d9	 df	 7b	 1b	

	 29	 92	 a6	 f2	 b9	 33	 75	 95	 09	 dc	 aa	 d4	 ac	 f2	 1b	 10	

	 af	 3b	 33	 cd	 e3	 50	 48	 47	 35	 30	 30	 31	 4d	 53	 00	 00	

	 00	 00	 00	 00	 00	 00	 00	 00	 14	 05	 41	 44	 4d	 49	 4e

I wrote a small tool, rak-the-ripper, that may be used to test for this problem.

IPMI 1.5 isn’t vulnerable to this attack; in 1.5 to generate an AuthCode a signature is first
created, using the data you’d like to authenticate, a random number sent by the BMC, a
sequence number, and the signature algorithm type; this is then in turn hashed along
with the password and the authentication algorithm type. The BMC may then verify that
you’ve sent the correct data and have used the proper password.

I’m not aware of any manufacturers that don’t support IPMI version 2.0 now; most
servers have backward compatibility with version 1.5, so for them all of 1.5’s security
issues are carried forward as well. It’s important to note that some vendors only have a
subset of IPMI 1.5 features (RMCP ping is the only feature I’m aware that’s mandated) –
check your documentation or with your vendor for specific details.

And while version 2.0 did add enhanced authentication and further encryption support,
it also added some serious security possibilities.

Session IDs Privilege level	

Random: client User name length	

Random: BMC User name	

GUID of BMC

	 6	

While there are some decent security options in version 2.0, all the popular management
tools (such as ipmitool, ipmiutil, bmc-config, individual vendor tools, etc.) use plain old
1.5 communications by default. While it’s possible to use cryptography to help secure
your communications, there are fifteen different and incompatible cipher suites to
choose from (in table 22-19, plus one additional suite for vendor-specific definitions), all
with various authentication, integrity, and confidentiality algorithms defined9. And
while the documentation of most tools suggest using a direct physical console or leverage
version 2.0 of the specification to encrypt the traffic when changing or setting your
password, all this complexity is presumably why none of the first 15 or 20 results of
examples returned by Google’s search engine actually used version 2.0.

I can only guess it was for performance reasons that the various cipher suites allow
“none” as a valid algorithm – that is, no algorithm at all. This creates situations where
the data might have integrity protection but is sent in clear text, or a message is
authenticated but has no confidentiality.

Of the 16 defined cipher suites there are only three that actually supply all three
protections (authentication, integrity, and confidentiality.)

Only one of the three confidentiality algorithms – AES-CBC-128 – should be used; the
other two are based on RC4, an algorithm with a troubled security history. Only RAKP-
HMAC-SHA1 should be used in the authentication – the other, RAKP-HMAC-MD5 – is
once again based on a weak algorithm10. Of the three integrity algorithms, only one –
HMAC-SHA1-96 – should be used; the other two are based on MD5, an algorithm with
serious security issues. The “-96” simply indicates that truncates the 160 bits digest of
HMAC-SHA1 to 96 bits. So in sum, only Cipher Suite 3 should be used; if your vendor
doesn’t support that for some reason, 8 and 12 are better than nothing, as at least they
offer all three types of protections.

That said, even SHA1 hasn’t lived through the test of time. NIST, an organization in the
US government that sets standards for proper cryptographic use for its agencies, wrote
(their emphasis) “federal agencies should stop using SHA-1 for generating digital
signatures, generating time stamps and for other applications that require collision
resistance. Federal agencies may use SHA-1 for the following applications: verifying old
digital signatures and time stamps, generating and verifying hash-based message
authentication codes (HMACs), key derivation functions (KDFs), and random
bit/number generation11”. This shows the difficulty of specifying cryptographic
algorithms in infrequently updated specifications; unless IPMI is updated at some point
we may well find ourselves in a place where all the cryptography specified is ineffective.

Depending on the vendor, their documentation, and implementation, this might be one
of the few times I might recommend using the so-called OEM options in IPMI, which
allow for the vendors to implement all sorts of things. If you feel like they offer better
solutions than the rather dismal alternatives above, go for it.

Carrying all of this to its logical extreme we come to the star of the cipher show – the
very first one, the infamous cipher zero. It is essentially the un-protocol, with no
checks for authentication, integrity, or confidentiality. To authenticate an account under
cipher zero any password may be used, as it will be ignored. A valid account is
required for authentication, but virtually any password will be accepted. Most servers
appear to have cipher zero enabled by default, and one of the largest, HP, has apparently
never allowed you to turn it off12 (more details and numbers in section 5.) Examples and
troubleshooting tips advising the use of cipher zero as a solution to authentication issues
abound on the Internet. Here’s a quick illustration, with more details online:

	 7	

#	 Commment:	 the	 command	 in	 bold	 shouldn't	 work	 due	 to	 incorrect	 	
#	 authentication;	 -‐U	 specifies	 the	 user	 name,	 -‐P	 is	 the	 password:	
	
	

$	 ipmitool	 -‐H	 10.0.0.1	 -‐U	 root	 -‐P	 calvin	 bmc	 watchdog	 get	
Error:	 Unable	 to	 establish	 IPMI	 v2	 /	 RMCP+	 session	
Get	 Watchdog	 Timer	 command	 failed	
Error	 sending	 Get	 Self	 Test	 command	
	

#	 This	 really	 shouldn't	 work	 either,	 but	 does,	 thanks	 to	 C0.	 	 Cipher	 0	
#	 is	 specified	 by	 “–C	 0”,	 and	 the	 “-‐I	 lanplus”	 says	 use	 IPMI	 v	 2.0:	
	

$	 ipmitool	 -‐I	 lanplus	 -‐C	 0	 -‐H	 10.0.0.1	 -‐U	 root	 -‐P	 FluffyWabbit	 bmc	 watchdog	 get	
Watchdog	 Timer	 Use:	 	 	 	 	 Reserved	 (0x00)	
Watchdog	 Timer	 Is:	 	 	 	 	 	 Stopped	
Watchdog	 Timer	 Actions:	 No	 action	 (0x00)	
Pre-‐timeout	 interval:	 	 	 1	 seconds	
Timer	 Expiration	 Flags:	 0x00	
Initial	 Countdown:	 	 	 	 	 	 15	 sec	
Present	 Countdown:	 	 	 	 	 	 15	 sec	

Another major security issue introduced in version 2.0 was because of the newly
introduced RAKP (aka the RMCP+ Authenticated Key-Exchange Protocol), which IPMI
uses to negotiate a secure connection. RAKP allows an anonymous user the ability to
remotely get the password hash from the BMC. This is an astonishingly bad design,
because it allows an attacker to do offline password cracking13 and break into a remote
system by guessing its password, and it’s unlike any other system I’m aware of (for good
reason!) It doesn’t appear to be possible to turn off RAKP if version 2.0 is supported
short of disabling IPMI over the channel (for most this would be LAN.)

There is almost one small bit of good news with IPMI 2.0 – while in IPMI 1.5 the same
password is used for authentication and integrity, IPMI 2.0 introduced what seemed like
an effective (if almost never used14) protection against a variety of password attacks.

RMCP+ (the plus sign indicates it’s the version after plain ol’ RMCP) may be configured
to use a two-key login where the normal IPMI password is used for authentication and a
2nd key, the BMC or Kg key, is used for integrity – and to execute most IPMI commands
or to authenticate to IPMI in general you need to know both keys. The Kg key may be
chosen on a per-server basis, so in addition to the basic IPMI password you could add a
unique password for each server.

This is a very cumbersome and very rarely used mechanism at the best of times, and
there’s a reason I used the word “almost”! Even if enabled the vendors have almost
completely subverted it to extinction, because when using the vendor supplied web-
based GUI, network authentication (LDAP, Radius, etc.), or other forms of
communications the additional password is ignored and only the primary account
password is used.

There are some additional troubling issues: the specification allows users to use null Kg
Key, rendering it useless even if enabled, plus the specification explicitly warns that no
”secure, confidential mechanism for installing and distributing user keys between BMCs
and remote consoles” exists, which certainly dampens my own enthusiasm. In addition
search engines show essentially no documentation, war-stories, or examples of use,
which means probably almost no one actually uses it.

IPMI is a flexible specification that allows a lot of different configurations, and like most
systems some are less desirable than others, security-wise. This malleability gives rise to
complexity levels at the point of absurdity; while several vendors do share OEM’d
implementations there is a tendency to add a layer of frosting on top that guarantees no

	 8	

interoperability. The specification also allows for vendor-specific (and undocumented)
tactics for most of the major functionality parts.

As a simple example it’s possible for a BMC to be configured with up to 16 different
ciphers suites, with session-based or session-less communications, varying privilege
levels on a per-cipher basis for each of nine communication channels, all of which may
have different protocol types, each channel having privilege limits that overrule user
defined ones, a dozen accounts per channel that can vary by name and ID number on
each channel along with ciphers, privileges and a variety of other things.

No one can reasonably understand the implications of such complex setups, which only
beg all the more for analytical tools. There’s a desperate need for security research,
articles, software tools, and discussion about the implications of IPMI and all it entails.

Finally, the IPMI specification explicitly mentions its requirements for low-level access.
The Master Write-Read command should prove fruitful for further research, as it allows
“unfiltered access the IPMB, ICMB, private management busses, and PCI Management
Bus. This would potentially allow someone to use those commands to send commands to
other controllers or write to non-intelligent devices on those busses.”

The specification also mentions the usefulness of System Management Interrupts (SMIs)
with IPMI, even though SMIs not officially part of the specification. SMIs are the highest
priority non-maskable interrupts on a computer, and when asserted the processors are
shifted into System Management Mode (SMM15) and the SMI handler – simply a bit of
code by the vendor – is free to fold, spindle, or mutilate the server in any way desired in a
nearly invisible fashion. The IPMI specification puts it succinctly – SMIs have “full
access to system memory and I/O space16.”

While it’s difficult to tell what vendors actually leverage SMIs (several vendors mention
it obliquely in their white papers or documentation, and HP mentions it in a patent
application17), but if they are used in conjunction with the BMC it may be leveraged to do
nearly anything on its server; for instance in a paper on monitoring virtual machines on
a server paper researchers18 describe how IPMI was used to communicate to a server’s
BMC to remotely trigger a hardware SMI, which in turn was used to read the server’s
physical memory on a periodic basis. For better or worse IBM only released this secret
method via an NDA, but presumably other vendors have similar undocumented features
as well.

III. Vendors: With Friends Like These….

There is a wealth of information available about the functionality of IPMI, but it’s hard to
find much at all about how the various BMCs out there work, or their capabilities in all
the various vendor implementations. For starters on most servers the BMC is a bona
fide server itself with a real OS and some fairly complex interactions with its host and the
outside world. But rather than a deep dive – which I couldn’t do anyway – this is
overview that is based on explorations with my lab machines along with examinations of
BMC flash upgrades and servers from other vendors.

From the start OOB was meant to communicate when things went south. Initially wary,
users skipped the normal network channels to the servers and used such reliable but
slow or pricey technology like analogue POTS lines, X.25, dedicated network circuits or
other independent networking technologies; the important part was that it was separate
from the main network as to be protected from not only potential attackers, but the same
outages that might bring down the network.

	 9	

As IPMI’s popularity grew, users and marketing folks naturally started asking for more
features, and even more naturally vendors were happy to supply. As a result more and
more functionality has been stuffed into the BMC, with most vendors supply at least a
dozen or more different services including web, mail, and SNMP servers that are all
outside of the IPMI specification.

There seem to be three or more vendors involved with any given computer’s
implementation: the chip maker, the one or more firmware adder-onners, and the final
server vendor who may add their own functionality and possibly an additional
management interface for the end users.

Figure 2 shows an architectural block diagram taken from the specification.

Obviously implementations will vary, but the BMC is a small computer running a
minimalistic OS (Linux being common19) with an independent CPU (often RISC/ARM-
based), RAM, storage, and Ethernet adaptor (although it can share its server’s network
interfaces as well.) There are just a handful or two of subsystem vendors that
manufacture the components that make up the IPMI ecosystem. The major server
vendors get their hardware, if not firmware, from Chinese manufacturs20.

The IPMI specification also defines interfaces used to enable and talk directly to other
subsystems such as management controllers, add-in cards, various busses such as
SMBus, I2C, and more. It can either directly or indirectly (via its link to the serial
console) change BIOS settings and fundamental server configuration settings.

The ARM 926EJ’s datasheet, used by Nuvoton’s BMC, seems typical (this is powering
one of my lab BMCs); it claims that it cruises along at about 200 MFLOPS, which is
faster than the first Cray super computer. Since the BMC sits idle over 99% of the time,
perhaps we could start harnessing them for SETI or use them as failover servers for light
duties. A few hundred million Crays just lying around; perhaps IPMI is simply a missed

Figure	 2	

	 10	

opportunity to better our world?

Open source and in particular GPL’d software is heavily leveraged, and from what I’ve
seen typically make up the kernel, OS, boot loader21, most of the network services, and
more22.
To be sure, the BMC isn’t a mere parasite on the motherboard: it’s more of a
bloodsucking leech, as all it relies on from the server is a very small bit of electricity. It
runs independently of the main operating system and is always running as long as any
power is supplied to the computer. It’s also inscrutable – other than the standard IPMI
interfaces used to query its configuration data I know of no software method that would
discover activity or details of what’s going on within a BMC unless you’re logged into the
BMC; physical monitoring via JTAG or other instrumentation might prove fruitful. All
communication requests are handled by the BMC’s kernel and supporting programs, so
even the most elemental of requests could return false data.

BMC Communications
There are four main ways of communicating to most modern BMCs directly: an
interactive shell (mostly via SSH or telnet interfaces), a web interface, various command
line tools (which may be used locally or through a kernel interface to the BMC), and
finally via series of network services (e.g. virtual media, remote consoles, SNMP, etc.)
that can be used either interactively or via automated tools to manage or query as to the
health and well-being of the BMC and its host. Ultimately most, if not all of these
capabilities are implemented just like on a normal Linux server: as a daemon or agent on
the BMC’s OS. Not all of these features are actually in the IPMI specification but are
nearly universally on the BMC and packaged up as part of the vendors OOB offering.

The IPMI specification defines channels as communication paths the protocol messages
and data flows on. Up to 16 may be used, including the system interface, primary IPMB,
and seven additional that are specified by the vendor. The two most commonly used
types by users are the LAN and KCS.

Most of the time IPMI must be explicitly turned on23 via the BIOS/UEFI/system
firmware or as part of a special vendor custom order, but it requires no configuration or
special software on the host OS to be running (although you have to configure the server
in order to communicate with the BMC.) Many servers have a dedicated Ethernet port
for the BMC, but it may also share the network adaptor of the host OS24. Once a power
cord is plugged in the BMC will start, whether or not the host system has been activated.

Depending on the vendor if IPMI isn’t enabled there might be a web server on the BMC
that can enable it. If nothing else an administrator logged onto the server is able to turn
turn everything back on at any time. Most servers don’t allow you to turn it off
completely.

Authentication
Pure IPMI authentication is handled via a small set (usually from 10-16, although the
specification allows 63 per channel) of local IPMI accounts, which may be given
passwords of up to 16 (IPMI 1.5) or 20 (IPMI 2.0) characters, and have one of five
privilege levels (ADMINISTRATOR being the highest level. Accounts may be disabled or
have a NULL (e.g. empty: “”) password.

The client either sends the password in clear text or uses a cryptographic hash to
authenticate to the server. The BMC usually will usually support network authentication
– the usual suspects like LDAP, AD, RADIUS, etc. – I’ve heard rumors that at least in
some implementations that they resort to some sort of hackery (such as simply

	 11	

appending the plain text password as an attribute, not quite what you might want; in any
case it may well be different than what one might expect.) Network authentication isn’t
in the IPMI specification in any case, so the implementation details are generally
unknown. The specification requires at least a single IPMI account on the BMC, which if
nothing else it’s useful to have a fallback mechanism so you’ll have console access during
those emergencies when your network or RADIUS or AD servers are down. On the
downside, you have that account still active, and it can be exploited.

For non-network based authentication vendors also use the IPMI password as a general
catchall for BMC authentication, including web access, their OEM vendor commands,
SSH, and for other capabilities.

Most actions explicitly require a password to be entered. However there are some
special cases where this isn’t true.

If you’re logged into a server with an administrative account you enjoy a special
relationship with IPMI; you can perform any IPMI-related action (including enabling
IPMI) on that local server and BMC without any authentication whatsoever. This means
that if a server is compromised local IPMI passwords or accounts may be modified,
deleted, or created, network services enabled, etc. If cipher zero (0) or the “none”
authentication type are enabled any user may be logged into without any password (or
any valid one) as well.

SSH and telnet (still alive after all these years) also aren’t in the specification, but are
nearly universally supported and enabled. In the past they’d grant access to a command
line system known as the Systems Management Architecture for Server Hardware
(SMASH) and Command Line Protocol (CLP.) SMASH/CLP had to evolve from a
committee – i.e. pretty arcane but make a certain amount of sense when looked at it
from the right set of angles. Newer BMCs seem to be moving to SMASH 2.0 over WS-
Management over TLS.

While it’s also possible to store SSH certificates on BMCs to allow password-free logins
these may well be problematic from a user management standpoint, since SSH wasn’t in
the IPMI specification and each vendor implements things a bit differently.

IPMI managers also need to ensure a process is in place to register all locations that have
the key along with a removal strategy after a user is terminated or their system is
compromised (which would then allow free access to all of the BMCs and IPMI managed
systems her key is on.) Some vendors also support single-sign on authentication; if that
is hijacked or the user’s normal network authentication can be compromised then all
IPMI managed servers would be in trouble as well.

The IPMI passwords have to stored somewhere on the BMC’s subsystem. I don’t have
enough data to really know about what the most common methods of storage are, but at
least some vendors simply stick the passwords in a file25 in on the Linux file system,
while others at least nominally hide it.

Networking
The IPMI protocol uses UDP port 62326 for communication, but a BMC generally runs a
half-dozen or so network services out-of-the-box that listen to a variety of ports, and has
at least as many waiting to be enabled with the web or vendor command line interfaces.
Among the usual cast of characters there’s web (both HTTP and HTTPS), SSH, telnet,
SMTP Virtual KVM/Keyboard/Mouse, Network USB and/or Virtual Media, VNC, WS-
MAN, DHCP, SNMP and more – often vendors have a variety of ports for their
undocumented special purpose software. And while not listening to network ports they

	 12	

also have various client programs that talk to the network like AD, LDAP, RADIUS, DNS,
mail (SMTP) and more.

Once more the vendors have the ultimate say on what is offered and how it is
implemented. Some of these additional vendor protocols use encryption, but many don’t,
and they almost all require authentication to be sent over the network to use; beware of
sending passwords over public networks! I noted in at least one offering (Dell iDRAC 6)
I could log into the web interface over port 80, and then when selecting the virtual media
options it switched to an SSL encrypted session – FYI, vendors, that’s a bit too late, an
attacker could have already stolen your connection or password.

Of a particular and perhaps visceral notice is that most BMCs now offer hooks to
Microsoft’s RDP/Terminal Services and/or VNC for a better view of the server side. Text
or graphical screenshots or even video recording console activity are common features
(the images or movies are stored on the BMC’s flash file system.) Obviously intruders
may use these as well to access the server, and without having to play any tricks to reboot
or change IP addresses.

Denial of service attacks targeting a BMC are trivial to execute, especially if encryption
has been turned on. The CPUs on these things are fairly anemic; they’re slow serving up
a web page, let alone dealing with lots of traffic or computation. I routinely crashed my
BMCs or wedged network services by simply executing legitimate or somewhat
legitimate commands. Indeed, the rmcpping documentation observes “that some
remote BMCs can get ‘confused’ and delay packet responses if duplicate packets (with
duplicate sequence numbers) are sent in succession very quickly.”27

I think it’s worth mentioning that a fair bit of the BMC’s capabilities aren’t found
anywhere but a BMC; virtual media, SOL, sensor data handling, the IPMI protocol, etc.,
so they haven’t had the same level of scrutiny that other exposed code has had. BMCs
based on Linux have millions of lines of code in addition, which is typically a mixture of
moderately popular open source blended with propriety code from a small number of
vendors.

BMC’s seem to be generally configured to disallow direct network communication to and
from the server, so the BMC can’t directly mount network shares, SSH to it’s host server,
sniff network traffic, etc. without changing configuration. I’ve had limited success trying
to eavesdrop on the other sides but have strong suspicions that someone skilled in the
arts (or even semi-skilled, I don’t really know much about embedded systems, kernels, or
low-level interfaces between systems) could enable the BMC more spying abilities by
simply using the command line. Curiously the Dell allowed the server to sniff the BMC’s
traffic when they were sharing an interface and not the other way around, but this seems
unusual.

In the servers I’ve examined the BMC can see all the network interfaces on the box28, but
are generally prevented from listening to server traffic (and vice-versa.) Given that most
operations work fine and some allow network listening, I assume it’s a configuration
issue; I’m hoping someone will get a more definitive answer, but time will tell.

Finally, like any other Linux system, the BMC may mount any supported types of
network file systems, for additional storage, stashing or retrieving data and tools, etc.29

Virtual Media and USB
Along with the remote console feature, virtual media is one of the main reasons people
really like OOB management. While it’s not in the IPMI specification I’m unaware of any

	 13	

vendor who doesn’t offer this feature on the BMC, although sometimes only with their
advanced or enterprise version (for an additional fee, of course.)

Using the virtual media feature a user can mount Disk images, USB sticks, DVDs/CDs,
and the like from anywhere on the net and they’ll appear immediately as a file system on
the host exactly like their physical counterparts (beware of autorun!30) Virtual media is
heavily used for provisioning or bootstrapping new servers or applications, remotely
installing or reinstalling the OS, deploying diagnostic tools, etc., and uses the standard
methods of remote file access (tftp, ftp, Window shares, etc.) I believe that most leverage
a shared USB bus (not necessarily all USB busses!) with the server to accomplish the
transparency – I’ve heard that some recent IBM servers go so far as to use USB as a
communication channel for IPMI commands and networking, which might open up
some interesting situations.

Virtual media is also perhaps the most straightforward way to take control the server
host, or at least the easiest to explain – simply mount a live CD with an OS of your
choice, ensure the boot order is correct, and then reboot the system – after all, this is
essentially what it was designed for. An ephemeral OS booted in RAM could explore its
host server’s disks, applications and data, which could be folded, spindled, and/or
mutilated unless encrypted. This is fast, as well – an automated attack might only take a
minute or three to reboot and scan a server, and before operations explores the any
failures of the server an attacker can reboot the server with things pretty much back to
normal due to some mysterious failure.

At least some vendors support the encryption of remote media, but both sides of the
connection must support it, and some types simply don’t support it (e.g. ftp, tftp, etc.)

Both the server and the BMC may listen to any shared USB hubs, and any virtual media
that was encrypted over the network will show up unencrypted on the USB bus.

Video and Remote Console
The server’s video memory is accessible to the BMC to allow video recording and
snapshots of the server’s screen, as well as remote console access. Not surprisingly an
attacker may use the same tools available to the owner. Most vendors hand out large
Java programs for users to run; Dell (and presumably others, given it appears to be an
Avocent binary) has a little command line program that may be run on the BMC do this
as well; here’s the command and a thumbnail of the image it took.

	 [WPCM450	 /bin]$	 avct_control	 capture	 -‐-‐file	 /tmp/snap-‐from-‐bmc.png	 	
	 Capturing	 screen	 to	 file	 '/tmp/snap-‐from-‐bmc.png'...	 Captured.	 	

It was also simple to capture keystrokes when a user was logged into the BMC and was
virtually “typing” commands to the BMC with the on-screen keyboard.

Figure	 3	

	 14	

Storage
All the BMCs I’ve seen use two or three basic methods to store data: the first is primarily
used for the boot disk, often a simple MTD (Memory Technology Devices) chip that uses
flash memory without a controller. This is typically broken up into partitions that
contain the boot loader (Das U-Boot seems popular) and various parts of the Linux file
system – usually the cramfs (which is read-only) or JFFS2 filesystems.

To protect against wear and presumably to make it harder to attack the BMC, one or
more RAM drives are created in the BMC’s memory and the flash memory is copied onto
a read-only RAM disk. You can sometimes remount the RAM-disk file systems to be
writable, but any changes only will persist until the BMC is rebooted. When a BMC is
upgraded it simply blows away the entire core operating system and writes in a new one.

Many vendors (HP, Dell, IBM, etc.) try to prevent the BMC from running any code but
their own. Some use an actual physical jumper that prevents you from writing to the
boot block, others use cryptographic storage and/or coprocessors from allowing you to
access the raw plaintext key store, and so on (and some do nothing!)

However, there are operations that need a writable store, and some require data to be
malleable but persistent, such as with configuration files, activity logs, etc. Upgrades
(which usually contain the boot loader and operating system) aren’t simply slammed
over the existing content – instead the new firmware image is stored in a holding area,
usually checked for validity and possibly a digital signature, and then moved into the
area where the last file system data lived.

Since the vendors don’t allow you to backup your BMC firmware (only the basic
configuration), they’ll typically have room for a version or two of past flash versions, so if
the newly flashed one spits up a hairball you have a chance to roll it back to a working
copy. This leaves a lot of space for data– in the tens if not hundreds of megabytes.

Flash disks, like most storage medium, are also vulnerable to even simple data recovery
methods. I conducted some tests using very crude techniques and was able to recover
about 2/3 of the free space I’d written to with the lowly (or mighty!) cat program on the
raw device. It was easy to recover data written to disk after removal, even after pulling
the plug and waiting 30 minutes to ensure the data should have been gone for good.

More information on the results and techniques are available online, but this wasn’t very
surprising given earlier work I’d done on the difficulty of destroying information as well
as other people’s work31 on recovering data from flash memory. Forensics research has
clearly shown that data is often fairly difficult to eradicate; since IPMI passwords and
hashes appear to be frequently stored there it seems as though even if the vendor’s
supplied methods – if they exist – take substantial precautions that the passwords could
still be recoverable from the BMC’s storage. In addition there was also some, although
substantially less, memory retention in the BMC’s RAM over cold boots with similar
types of testing.

Internal BMC Security and Trust Architecture
There are some security architecture problems with the way BMCs are architected that
seem relatively universal among implementations. It shouldn’t be surprising that it’s
simple to access any and all communications to and from the BMC, of course, including
anything on the web interface, USB, network, etc. Encryption won’t help, since the BMC
decrypts it anyway, so a compromised BMC could easily be used to capture IPMI
passwords, as well as any session or virtual media information, including any passwords
and locations that the BMC uses to connect.

	 15	

By far the worst, however, is that an attacker can create a persistent compromise. And
when I say persistent I don’t mean simply continuing through a power cycle – I mean
that unless you know something I don’t I don’t know of any way to kick them off the
BMC. This requires a little knowledge, but I can only assume it’ll show up in exploits
soon.

The vendors may have a devious way of getting in that doesn’t require the BMC’s
participation, but it could be that physically damaging the chip and kill IPMI altogether
is the only hope. JTAG – if supported at all – would probably work in the right set of
skilled hands, but no public documentation exists on using that on any BMC that I’ve
ever seen.

Such a persistent break can happen (at least on Linux-based models) because the BMC is
simply a Linux server, and all the configuration changes, IPMI commands, flash
upgrades, and changes you might want to make on it depend on programs and shell
scripts that can be modified or disabled if an attacker has compromised the BMC, leaving
you incapable of managing your own hardware. And even if you had root access before,
you may not for long.

I was able to do this on a Dell and SuperMicro BMC. It took little effort to place two types
of persistent data on their writeable file system partitions: the first was only semi-
persistent, and was simply placing SSH keys and configuration changes that allowed
remote host-based administrative access with no additional authentication; the second
was a program (shell script) that executes during the boot process with system privileges.

Both are (a) invisible to the owner of the machine32 and (b) allow persistent, long-term
access if desired. I didn’t completely shut off access to the system because I wanted to
retain an entry point for myself(!), but with a little more effort one can imagine a system
that would simply wait for external commands before springing into action.

If you had access to the shell of the BMC it’d certainly be possible to eliminate the SSH
hole (assuming you could find the modifications); re-flashing the firmware would
probably remove the changes as well, but it depends on vendor implementations.

However – if you change the boot process, which I did in the 2nd type of compromise, it
means that I can do anything I want. I was able to kill off the BMC agents that were
listening to outside commands, making it, as far as I could tell, impossible to dislodge
me. This is because all inbound BMC communications go through pretty simple
channels – a daemon or agent here, a web UI that makes an API call or executes a
program there, etc. As an attacker I can, and did, disable all of these. Short of physically
damaging the chip, zapping the storage somehow, using JTAG or some vendor trick
doesn’t depend on the BMC itself to be trusted to do the right thing – I don’t know of
any way to get me off the system. This works because nothing operates at a lower
level than the BMC; any attempts to update the flash, via the BIOS, CD, vendor,
command line tools will result in the same thing: they all ask the BMC “would you please
update yourself?” This is logically consistent with the design, at least, because vendors
don’t want you putting your own firmware on the system; instead of slamming in new
firmware they put it aside to examine it and then decide on whether or not to install it. If
I’m in charge I can say no. And even if it’s impossible to modify the file system (which I
seriously doubt, but I ran out of time!) to change the boot process entirely, as soon as I
can execute a program I can instruct it to cease running programs I don’t want and then
it’s game over.

	 16	

There’s a near total lack of visibility about what’s going on down in there. About your
only hope is external to the box – if an attacker sends network traffic and you’re sniffing
it you might see something, although it might all be encrypted or obfuscated.

It seems pretty clear that persistent compromises will lead to ads, spyware, and other
malware to be injected via the BMC. While it might be amusing in some sense to have to
do ad click-throughs to access your remote consoles (or perhaps a simple “deposit 1 bit
coin to access your server” for the next 30 days), I don’t think many server owners would
appreciate the humor.

In the upcoming paper “Illuminating the Security Issues Surrounding Lights-Out Server
Management” A. Bonkoski, et eviscerate various SuperMicro server models and tear
them into little bits, noting that they could break into forty thousand BMCs in an hour or
less with one exploit, and confirm the existence of many more. This boosts the
credibility of some predications I made in the last version of this paper, when noting the
very poor defensive strategies and code that permeates the BMCs I’ve encountered. The
bad code, crashing and flakiness, developer files and tools left lying around, programs
and configuration files that are referenced but don’t exist, repeated log entries of missing
or broken elements (that are never looked at, since only someone logging into the BMC
can see them), all point to poor process and execution – and – more to the point, an
indicator of security problems that are simply waiting to be unveiled.

And who knows how long the security bug list that the vendors know about, or the people
who wrote the code? I would imagine an author of some of this code might well be a
formidable enemy. After finding an undocumented feature on my Dell server33 that
would enable shell access on the BMC among other serious and long-lived flaws it makes
me wonder: what else is out there on these black boxes?

And it appears that the vast bulk of BMCs are manufactured in one country – China. I’ve
personally nothing against China in particular; it’d be of similar concern if any single
country had such control over such a sensitive piece of technology that is such a sublime
possibility for spying and espionage.

The cracks are starting to show – I’ll further predict a rather sizeable wave of exploits
will be coming out soon. They may already be out, but rather than warning the public of
the dangers, they may be simply sold to the highest private bidder to become a part of an
electronic weapon. These sorts of exploits are low hanging fruit.

IV. How IPMI has Been Used

Other than the people who actually use IPMI there aren’t a lot of people who know what
IPMI even is, let alone how it’s actually used in the Real World™. Given the flexibility of
technology there can be vast differences in implementation, but I feel that there are some
common threads.

IPMI generally plays a substantial role helping the basic role of system administrators
(and all the assorted and sundry varieties): minimizing costs while maximizing
availability and resources to their users. In large part it does this by giving close-enough-
to-physical-access while keeping skilled network, host, and application administrators at
their desks or at home instead of driving once more to the data center to reboot a system
or troubleshoot a problem.

Vendors clearly state you should keep IPMI traffic on its own separate network, but for
cost reasons this is rarely done (I’ve never actually seen it or heard of anyone who
actually does this, but presumably some do somewhere.) Instead, as previously

	 17	

mentioned, either VLANs or non-routable networks are heavily leveraged (and sharing
space with all those systems that few ever interact with but are pretty crucial to running a
network or datacenter). System administrators know that IPMI is a loaded gun, so
intentionally placing an IPMI interface on an unprotected network segment or the
Internet is not the norm, but as evidenced by the recent survey data (see section 5) it still
happens a fair bit. Remote access to IPMI networks are instead protected by some of the
highest security in the organization, via VPNs or other network choke points that require
strong authentication to enter.

To do anything with IPMI you must be authenticated34; in my experience network
authentication isn’t commonly used – instead a single password (or a small set of
passwords) is shared for large blocks of computers.

Network architecture is different than a usual design as well; for instance a typical
network zoning architecture might look something like figure 3, partitioned into network
areas by routers, load balancers, firewalls, and other network gear in or between each
zone.

IPMI networks, on the other hand, are generally grouped by geography or by system
management or provisioning groups rather than by the usual network topologies and
security groupings of application or service offerings. In the image above all the servers
might well in a single IPMI group.

This is an important distinction, and I’ll repeat – IPMI groups are generally duplicated
throughout blocks of servers that are aligned with geography and operational groups, not
by the server’s function, business owners, and the like. While they’re nothing stopping
anyone from using a variety of methods to manage the passwords, it’s often done this
way because the same people managing IPMI are not the same people managing the
higher layers of the computer, plus it’s the easiest way to deal with a complex problem.

The IPMI network, rather being segregated or split into security zones, is usually one big
flat area – it transcends the usual network and security architecture and affords
unfettered access to large amounts of important systems that cut across organizational
boundaries. This is by intent, and the idea is that no one but very special and trusted
people should be mucking around back there. To make things more interesting the usual
security measures and network monitoring usually isn’t done in these back networks for
the same reason they’re shared with IPMI in the first place – it’s prohibitively expensive
implement, and the real threat is thought to be outside of the network35.

Figure	 4	

	 18	

Large organizations – especially the more modern or tech-savvy ones – often have very
large IPMI groupings of managed servers; 100,000 or more are not unheard of (IPMI is
especially important for bootstrapping installations, provisioning and maintenance.)
This isn’t really new: the computer-as-a-utility model means huge data centers that
stamp out lots of servers, and running internal or external clouds is pretty standard these
days. In these larger groupings IPMI plays a big role in provisioning via PXE
bootstrapping and fast provisioning in particular. The IPMI passwords and
configuration are usually set when the machine is initially provisioned or via vendor
special custom builds at the factory.

While most server vendors have tried to sugarcoat the pig to ease system administration
burdens, most server vendors aren’t hailed for solving enterprise-level management
problems; they are also often active in their efforts to create products that don’t
interoperate with competing vendor solutions. As a result any substantial heterogeneous
IPMI customer implementation generally stick with a minimalistic core of features that
can be automated or used in a somewhat cross-vendor fashion, rather than fully
implement all the rich vendor sets of features.

Another this-doesn’t-help-IPMI is that no one really knows where all those servers are.
As amazing as it might seem to those not in the server management business, actually
knowing just the basics about a random server (e.g. where it is, what it does, who the
business owner is – heck, if it even exists) with, say, 90-95% overall accuracy is doing a
tremendous job. There’s an entire research field and sets of solutions (that don’t work
very well) dealing with the problem of building a somewhat Sisyphean configuration
management database (CMDB), in the hope that you’d have an Oracle that knew all.
Across large enterprise the numbers get even bleaker. This in turn means that changing
IPMI passwords is very painful and rarely done. The usual network based user and
password management tools don’t work, and changing most of the passwords doesn’t
cut it: if you miss any you’re forced to have to keep track of the older passwords used as
well, in case you run across a system that was missed in the last round of changes.

Essentially the password management situation is using static configuration files in a
large dynamic situation – horrors such as the old “HOSTS.TXT” files and its friends are
the reason we moved to DNS and network authentication all those years ago; even 30
years ago we knew that static just doesn’t scale or work in large networks36.

Most organizations of any size have a small group of trusted individuals that know the
IPMI password or how to get it (e.g. a physical safe or lockbox.) If one of the anointed
few left the organization you’d just kind of hoped that they wouldn’t be evil rather than
go through the monumental pain of change. Plus the general feeling seems to be that
they’d have to have inside access to the datacenters to have it make any difference, as the
server’s IPMI network interfaces weren’t exposed to the general populace.

In reality IPMI passwords aren’t available to a few trusted souls, however. Management
consoles and automation scripts have them embedded in configuration files or in the
code. Mobile IPMI management apps are flourishing and routinely save the password
on the device. Browser caches on administrator machines are another good place to
look. Backup servers have a wealth of passwords stored on them, often spanning
different IPMI domains.

Mistakes happen, as well; I had a good source inform me that a Fortune 500 company
accidently posted their IPMI password that was embedded in some software to Github (a
popular web-based software development site) – a password that was used to manage

	 19	

over 100,000 servers – and was then quickly and quietly pulled it back. As far as I know
the password is still being used.

In sum the current security strategy is to only allow the small and cool group of kids the
magic password and try to keep the attackers away from those interfaces at any cost.
Such things are hard to measure since no one is talking, but I’d guess that the lifespan of
IPMI passwords in larger IPMI groups could easily be measured in years.

V. BMCs gone Wild

Other than anecdotal evidence not much is known about how IPMI is actually used,
configured, and secured. To gather some data a “Get Channel Authentication Capability"
packet was sent (IPMI requires an answer to this request) to all IP addresses on the
Internet (e.g., 0/0 minus private networks on the IPV4 space) over an approximately 24
hour time frame. These initial results were used to send a few additional probes to
answering hosts. Keep in mind that there are orders of magnitude more servers behind
firewalls, gateways, and other network barriers that won’t speak to strangers on the
Internet, and obviously within any organization there are many more systems running
IPMI. In any case 312,357 IP addresses responded to the initial scan, with 295,364
replying with a valid IPMI response packet.

Version-wise, about 2/3rds of the replies indicated that 1.5 was the only one supported,
which is surprising, given the age of the protocol (it was last revised in 2004, and version
2.0 seems ubiquitous amount current vendors.)

The fine SSL observatory software was used as a follow up on hosts that replied to the
initial packet; since most BMCs support a web interface I thought it’d be interesting to
see how common it was to leave it exposed as well. Of the close to 300K initial servers
111,090 were also running a web server with a certificate on port 443. Many scans and
surveys have been done about this already, and the certificate news was about as bad as
everywhere else. Almost exactly were self-signed (49.8%), and lots of errors abounded,
with a full 40% of expired.

Of note were the number of duplicate certificates – many vendors simply use the same
certificate for all their BMCs of a certain make and model, and expect the user to change
them. They don’t. Other than a pair of generic replies with no vendor (e.g. VeriSign and
GeoTrust), here were the top ten:

Number % of
Total

Issuer

23506 (16092) 21.1 Super Micro /CN=IPMI/emailAddress=linda.wu@supermicro.com

 (7414) Super Micro /CN=Linda/emailAddress=linda.wu@supermicro.com

8763 7.9 Aten /CN=doris/emailAddress=doris@aten.com.tw

6920 6.2 ??? RSA Public Key: (512 bit)

5413 (3577) 4.8 Dell /CN=iDRAC6 default certificate

 (1836) Dell Inc /CN=iDRAC6 default certificate

4531 4.1 Peppercon AG

4487 4.0 GeoTrust DNS:*.securesitehosting.net

2347 2.1 ??? RSA Public Key: (1024 bit)

1870 1.7 GeoTrust DNS:*.securesitehosting.net

My money is on Linda Wu has the real power behind the IPMI throne, with Doris a
distant second; since the scan only did a small fraction of the total servers in the world,

	 20	

these two women must have many millions of certificates that they’ve signed running
around. Server certificates are an important front-line defense against man in the
middle attacks; duplicate certificates means that if any server of a similar model is
compromised, yours or someone you’ve never heard of, it can put your own users and
servers at additional risk. My advice? Don’t fight Ms. Wu in a dark alley.

I also did a quick check to see if Cipher Zero was enabled with a subset of the total
servers scanned. Of the systems that claimed to support IPMI 2.0 and I was able to
determine a valid account, I found that over half had it enabled. While difficult to draw
too many conclusions from this it’s pretty clear that if people were aware of the problem
they wouldn’t have this turned on!

Cipher 0 Enabled Total Scanned Percent Enabled
20513 35494 57.8

As a final check I used the RAKP remote hash recovery method discussed in section 2 to
see if it’d prove to be a reasonable attack method. 29.3% of the passwords were cracked
in a modest run of the the Hashcat password guessing engine; the top 10 most popular
passwords:

Password
11592 ADMIN 890 superuser

2808 admin 786 computer1

2703 PASSW0RD 567 changeme

2139 calvin 380 4rfv$RFV

972 root 303 password

890 superuser 256 123456

Not many surprises here, although I’ll note that about 1/20 servers still use their vendor
default password (the top guessed password, “ADMIN”, is from SuperMicro.) I’m be
putting up more details and additional results (although no individual system’s data will
be released) on my site.

VI. Security Proclamations

Certainly it’s bad enough if someone compromises a server’s BMC, because it’s meant to
be an opaque box that can’t be monitored, plus it has a lot of power over the server it
resides on. But the real win is to get an IPMI group password, because that can grant
access to large blocks of servers in a very stealthy fashion. It’s a real killer because in
addition to the damage that can occur you usually will never spot it leaking out, so you
can’t be certain who knows the password.

Unfortunately the BMC server is lacking some of the very basic security controls we now
take for granted in modern servers – if someone tried to install a server with equivalent
security and operational features on a production or server network zone they’d be
laughed out the door.

A basic security lemma is there is no meaningful security without a way of validating the
existence of problems or the lack of the same. Typically this is what audit tools do – they
allow you to verify security via automation or manual examination. The BMC is almost
completely un-auditable, and a crafty attacker may corrupt the results as well.

	 21	

In addition to its lack of auditability, there’s no (legitimate, or at least vendor-supported)
chance of performing internal configuration, integrity, and systems testing, let alone
change management; there’s almost no activity logging available, it’s impossible to
install 3rd party security or defensive software on the BMC, no host-based firewall37, no
method of enforcing or checking password complexity & strength, default there are
administrative accounts with well-known or no passwords at all that are extremely
difficult to impossible to audit, there is no documentation, no means of backing up the
system, and on and on and on and on. But there are more issues, actually lots more, and
in some cases rather unique that add up to real trouble:

The IPMI protocol requires vendors to implement serious security
problems.

It really bites to have to use a protocol that can be used against you, because it can take a
loooong time to fix, if ever. Some specific issues:

1. The reusable passwords used for IPMI authentication are stored on the BMC in
clear text in flash storage or in its memory38. It can be more-or-less difficult
to extract or capture the passwords, but there are numerous ways that you can gain
access to them. And most definitely if you have physical access to the server39.

This has a bad side effect: de-provisioning systems is really dangerous now. If an
attacker can recover the IPMI password from a server it makes the end-of-life
process for a computer a bit trickier than usual. The typical best practice for end-of-
life-ing a server, even in very high security organizations, is to melt or shred any disk
drives and to try and get rid of the carcass. However the IPMI passwords stored in
flash are still on the motherboard. Remember all those 2nd hand servers you let
employees buy or take home or the old dinosaurs sold on eBay when you did the last
hardware refresh? They have your passwords on them still. The same one you use
for all the production servers.

With no documentation it’s hard to say how to erase the passwords from the BMCs
flash memory – where is it stored? Is it backed up somewhere? Can an attacker
recover them with data recovery methods on the raw media, as my tests seem to
indicate? Presumably different vendors implement this very differently. I know of no
best practices, standards, or even guidance from vendors on how to ensure the
password is really vaporized. I’m not sure if any method other than physically
destroying the motherboard should be trusted.

2. Password hashes may be recovered remotely by anyone who can speak the IPMI
protocol. This means attackers can grab your password hashes, run them through
password guessing engines offline at their leisure, and then come back to hit you with
the appropriate password.

3. Accounts may be logged into without authentication, thanks to our friend cipher
zero, the anonymous account, and the “none” authentication method.

4. Information leaks from an overly friendly protocol. It’s great that the folks who
designed IPMI were concerned about the user experience40, but you really shouldn’t
give out information such as password-less accounts exist, whether or not you can
login anonymously, and a handful of other issues.

5. IPMI’s design requires the implementation to have very low-level and potentially
dangerous access to the lowest-levels of a server. And suddenly low-level Denial of
service and strange hardware attacks become easy, nasty, and very real. DOS attacks
usually bring forth a yawn, but these are a horse of a different color. What if your

	 22	

server’s drives, memory, CPUs, etcetera start disappearing intermittently or
permanently? Or if your server’s memory or disks get corrupted … occasionally. Or
worse.

6. Having IPMI access also means (remote) console access; this in turn grants access to
the BIOS or UEFI server configuration via the vendor utilities (usually obtainable by
hitting a special key (DELETE or whatnot) right after the boot starts, which can be
monitored in via IPMI.41)

7. Virtual systems can be chewed up from the inside. Of course this isn’t a great
surprise given all the rest, leverage IPMI to make an IBM server’s BMC to facilitate
SMI interrupts that would halt the physical server briefly in order to check the
integrity of the hypervisor; it also gives an idea of some of the power that servers
have by design (and by proxy IPMI) to manage live virtual systems. All of this
happens in milliseconds and is generally unnoticeable to the user.

8. If a server or the BMC web interface is compromised an attacker can talk to (or
change) the BMC network interface and all of the services it runs on the trusted
network42. This is because the IPMI protocol (via direct commands or the web-based
GUI) grants the power to modify or configure the server’s physical network
interfaces.

User behavior causes issues as well; they’re largely driven by the specification and
what vendors give them to work with, but in any case:

9. If you have the IPMI password for a single system, you have the password for all the
computers in that IPMI managed group of servers, which are often very large groups.
I’m unaware of any implementation that can show how long the password was
deployed, last changed, or which systems share them.

10. Avoid bleeping IPMI mobile apps. They now have apps for mobile devices that
store the IPMI password, and everyone knows how often phones get lost, stolen, or
left alone and defenseless in a hotel room. If you value your systems. I find it
difficult to agree to any risk calculations required to justify this, unless it’s part of a
two-factor authentication system and at least one of the factors isn’t on that phone!

11. The BMC’s ability to leap across interfaces and access anything the server its on is
plugged into illustrates a shortcoming of the standard models of network
architecture. The back networks that aren’t usually exposed and require two-factor
authentication, traversing bastion hosts, and the like are actually at risk whenever a
system is compromised that has a network interface to it, no matter what network it’s
on. And shared networks with 3rd tier servers can also grant access to the super-
valuable areas you really don’t want people mucking around with43.

12. Given the frequent problems uncovered, systems exposed on the Internet, and a lack
of basic knowledge of IPMI security issues, uneducated users are shooting
themselves in the foot repeatedly with a large caliber pistol.

And of course vendors have introduced their own set of issues:

13. Your servers have IPMI and the BMC functionality even if you don’t know it or use it,
and it cannot be removed. To be fair most – not all – vendors ship servers with IPMI
disabled unless you specifically request it. You can try disabling it, but I don’t know
of any way to permanently disable via software, and it can be turned back on at any
time. Remember, unless power is completely removed from the server (cord
detached!) the BMC will continue to hum along, irrespective if it’s used or if the host
is on or not. Higher level vendor implementations like iDRAC, iLO and the like can

	 23	

at times be uninstalled but the BMC is usually embedded on the motherboard itself,
ready to be flashed and set into action at any time.44

14. If you can get any one of these three items – root access on a server, have an IPMI
administrative account, or shell access to the BMC, you can compromise the other
two.45

15. What you can do as an administrator or root on an IPMI system is substantially
worse than having root on its host computer. In addition to having complete control
of what goes on in server-land the BMC is able to manage or control pretty much
anything – hardware, software, firmware, etc. – on the computer

16. Controlling the BMC allows traversal of separate networks you might not want to see
or think about being connected. It seems to be generally assumed, or at least hoped
for, that IPMI and host network access were separate and neither could access the
other’s network(s)46. This is clearly false.

17. The BMC runs a variety of network services that are ripe for security vulnerabilities.
By default a half-dozen or so are on out-of-the-box, but others may be turned on and
a dozen or more total network services are pretty common47. All the programs are
fairly old48 and vulnerabilities are presumably shared for all the similar servers
you’ve deployed from that vendor. While you can turn off some of the services others
can’t be (like the web server that allows you to configure the system.) And even if
disabled an attacker who compromises the server can turn them back on to attack.

Since I released the first version of this paper more cracks, bugs, and holes are
starting to show up. There will be more.

18. When vulnerabilities are found in the BMC you can’t apply a security fix yourself
because you don’t have BMC login access and vendors generally disallow flashing a
patched ROM image of your own; you must wait until the vendor puts out a release.
It’s hard to imagine a much worse situation – even if you disable a vulnerable service
and attacker can turn it back on, compromise your system, and then turn it back off
again. This is a very difficult attack to notice, let alone stop.

19. The BMC can monitor the host computer, but the host server has almost no visibility
to what’s going on in the BMC49. Not much to say here – the BMC has the all-seeing
eye, while the server can’t even tell what version of firmware that the BMC runs,
given that it has to believe that a potentially compromised BMC will answer
truthfully.

20. It’s hard enough to tell if a server has been compromised. It’s nearly impossible to
tell if the BMC is50. Ironically the vendors, in presumably trying to protect the IPMI
passwords from compromise, have made it very difficult for legitimate users or
owners from examining the BMC very difficult; you usually can’t detect anything
about the BMC’s status or state other than the vendor version number, which, of
course, is communicated to you via a secret program running on the BMC that an
attacker might modify. I ran out of time trying to get the Qemu emulator running on
a BMC, but one might imagine a BMC running a virtual BMC and how hard it would
be to figure that one out. Dell does have the undocumented “ap-req” command no
their BMC, which says “Start DRAC simulation” upon execution, but I’ve yet to figure
out what it really does. Turtles all the way down.

21. Man-in-the-Middle attacks and other cryptography issues are probably not high on
your list of concerns compared with everything else, but it should be pointed a fair bit
of the traffic going to-and-from the BMC aren’t encrypted or protected against this

	 24	

type of attack. If you’re merely using IPMI behind the scenes in your own trusted
network it might be fine, but BMCs will shift from encrypted traffic to unencrypted
fluidly and without much warning, and some types of traffic is never encrypted51.

22. IPMI data consumers have to worry more about unfiltered input. Interfaces to the
BMC and IPMI have filters to try to prevent dangerous (e.g. overly long, shell meta
characters, JavaScript, etc.) data being placed into them; an attacker who controls
the BMC, however, can generate arbitrary and unexpected responses. Data-driven
attacks, especially when they come from unexpected sources, are very effective. For
instance a programmer reading the specification knows that usernames cannot be
longer than 16 bytes, and might not anticipate getting back thousands of characters.
Popular consumers of IPMI sensor readings, such as Nagios, Zabbix, etc, have
already fell prey to data based attacks on other sources of data and have security
advisories in their names.

23. Evil maid attacks (EMA). A term coined by Joanna Rutkowska, an EMA is when an
attacker has physical access to a computer and can muck with it. If an attacker can
replace or modify the BMCs firmware then that firmware can not only compromise
that system, but if the maid is able to read the IPMI password…. At the time TPM or
other secure boot mechanisms were thought to be protection against such attacks,
but IPMI is rock to secure boot’s scissors; the secure boot people freely admit that
they can’t safeguard against physical access – or the equivalent.

24. At least on some servers both BMC and the server can sniff, monitor, manipulate, etc.
each other’s network traffic. Sniffing traffic can sometimes compromise IPMI keys,
and may also inform attackers where trusted systems are (such as those holding SSH
private keys, or monitoring or automation servers) if they want to attack upstream or
the management servers52. I don’t have any good data to know how universal or rare
this is.

Even if you manage to have everything locked down and make it very difficult to gain
access to the IPMI magic password it only takes one mistake or leak of information to
grant access to all the servers in the group. Worse still, unless you’re very lucky you’ll
never know anything is amiss.

All of this makes known incidents very troubling as well. What is the correct response if
you suspect that a server has been compromised? If the IPMI password can be captured
by merely being root on a server then the usual defensive strategy of having a small
group of trusted people with the password isn’t valid even if you don’t have an outside
attackers – any administrator or legitimate root user now has the ability to get the
password.

How to responsibly deal with BMC vulnerabilities is also troubling: what’s the correct
response if you find a security flaw is found for a BMC or set of vendor BMCs? Today for
your average vulnerability it’s rather common to send it to full disclosure lists along with
a security advisory, often with exploit code or details that leave little to the imagination.
Is the calculus here seems a bit different; users have very little recourse in the way of
safeguarding their systems against a new exposure since they can’t patch their own
systems or turn off the problems. Sending the problem only to the vendor is one
possible option, but traditionally researchers and full-disclosure advocates complain that
vendors are often slothful when there isn’t any public pressure being placed on them.
There would also presumably be substantial financial incentives to not disclose to the
vendor – if you discover a zero day exploit53 against a BMC you may well wish to sell it to
interested parties.

	 25	

The scale is very different as well – it’s very rare when a systemic, vendor-wide, issue
comes up for all computers from a given vendor (and in this case it could involve
multiple server vendors if they share some of the same code or firmware manufacturers.)
Coordinating patches fix across all vendors in enterprise would be extraordinarily
difficult not only because you don’t know where all your servers are, you also don’t where
the specific vendor types are as well. Operational risk would be substantially higher
when trying to deploy new firmware enterprise wide than fixing an application here and
there; and of course you should remember that firmware management is typically
implemented using IPMI.

In any large organization legacy systems abound – they might run the old payroll system
or do some other crucial task that would cost millions to replace. What do you do when
a new BMC vulnerability that exploits older systems that aren’t supported by the vendor
– or the perhaps the hardware vendor doesn’t even exist anymore.

Finally – even if you don’t care about this whole password thing; if you thought Stuxnet
was stealthy, at least it was running in on your CPU – how about something that has full
access to your system that’s just about impossible to directly discover (let alone analyze)
from the OS? For a long time malware has been digging deeper and deeper into the
hardware layers, the future of serious spyware and malware will continue to dive more
deeply.

In sum: Imagine trying to secure a computer with a small but
powerful parasitic server on its motherboard; a bloodsucking leech
that can't be turned off and has no documentation; you can't login,
patch, or fix problems on it; server-based defensive, audit, or anti-
malware software can’t be used for protection; its design is secret,
implementation old, and it can fully control the computer's
hardware and software; and it shares passwords with a bunch of
other important servers, stores them in clear text for attackers to
access.

Not to mention it was designed for full control, remote management
and monitoring, and it’s pretty damn good at it.

VII. Into You Like a Train (Conclusion)

While I may have painted a bleak scenario, the confluence of issues in the IPMI
specifications, the vendor add-ons, and how IPMI is used in the real world really do
make one nasty brew. Just thinking about the huge system outsourcing shops and
managed system providers with IPMI access to all of their various customers makes me
rather ill. The current situation of vendors having black boxes that can wreck havoc on
an organization’s security so readily seems ripe for exploitation. I don’t think it’s
reasonable to expect that two tightly physically coupled computers that share resources
won’t leak information or allow one to fold, spindle, and mutilate the other.

I was much more unsure when I started working on IPMI security but since releasing the
first version of this paper along with some simple tools no one outside a vendor or three
has disagreed with anything I’ve written. There still is a lot of murk about how IPMI is
actually used and deployed, but in the last half-dozen months I’ve uncovered more
serious security problems and the overall situation isn’t getting any better.

While IPMI and BMCs have a near breathtaking amount of structural, architectural, and
procedural security issues that are really serious, there doesn’t appear to be any evidence
that many on either side are taking note, and as far as I know, no one has written any

Hirudo	 medicinalis	
aka	

Leechus	 Amongus	

Figure	 5	

	 26	

really nasty BMC exploit code that would take over a server and bend it to its will. Of
course who would actually know it existed unless it was found? Using a BMC as an
attack or spy platform could easily be done today; at least for some number of boxes it’d
be pretty simple, even for me.

Leveraging the BMC for the more nasty stuff, like grubbing around in memory, the raw
disks, and all that would probably take a kernel or an inside BMC developer to do well,
and may or may not be possible on any given vendor’s implementation. But for the
BMCs that support these operations it could be an absolutely devastating attack.

A further downside for the white hats is that (a) given the small number of BMC
firmware manufactures that are widely OEM’d, such exploits cover a very large number
of servers in the real world, and (b) such code would probably be modestly reusable. The
question isn’t how much an attacker wants to spend to compromise your servers, but a
given BMC or firmware add-ons in general. High stakes and green-field opportunities
seem to be abundant.

Cryptography won’t help much. TPM or other trusted boot mechanisms aren’t
commonly deployed (and especially not for servers) and they also explicitly state that if
someone has physical access – or the equivalent, in IPMI’s case – all bets are off.
Indeed, sniffing, inserting, or modifying cryptographic keys isn’t incredibly difficult if
you can modify the basic boot process as well as monitor and change system components
and capability at will.

And of course it’s not quite time to stick our head’s in the virtual oven. There are a slew
of 3rd party OOB, IPMI, and system management systems out there that might be
leveraged for better security. Of course even if they do work firing up a large
management system always takes a lot of effort to implement as a customer, and even if
successful the management systems themselves become a very large and valuable target.

HD Moore, of Rapid 7 and Metasploit, seems to be one of the first to take this seriously
and start writing some auditing and testing tools for IPMI and BMCs54.

We are a bit behind the eight ball right now – there doesn’t even exist a reasonable set of
technical security and configuration best practices, which is pretty amazing. Other than
my own advice I’ve yet to run into any checklists or best practices other than “ensure the
IPMI interface is on a segregated network that is protected by a firewall”, and “change
the default user password” sort of platitudes. There has also been nothing available on
de-provisioning BMCs securely, from the vendors or any other literature. These would at
least raise the bar but can’t address the core, more intractable, issues.

It seems that the server vendors are in the driver’s seat to really implement change. They
simply have to release more details of their IPMI based products; but we server and
business owners really need some transparency from them to help with this situation.
Opening up access to 3rd parties and customers to permit defenses, logging, and
introspection should be de rigor. Telling customers how to de-provision servers in a safe
and secure manner should be fully documented. And with so much open source used to
implement the BMC more details and released code should be easily found and widely
available.

It might also be high time to create an updated IPMI specification; by all means keep the
good parts, but backwards compatibility with the worse bits would be simply dangerous.

Researchers, large vendors, and the security community are full of brilliant folks,
however, and if I’m sure they’ll weigh in on this situation sooner or later. Various
vendors have done a thing or three to try and address some of the security issues I’ve

	 27	

highlighted, but not much that attempts to address the root problems. And even the
nimblest of large companies can be plodding; when I worked at Sun we had a horrific
security problem that somehow survived for years (“/etc/hosts.equiv”, for those who
remember) that by default allowed remote login access without a password. It can (and
did!) take a very, very long time to fix even the simplest of problems for fear of losing
sales – after all, security is generally pretty low on the sales totem pole.

The first version of the paper met with a small bit of response, but I’ve yet to see any
disagreements about what I wrote other from people who hadn’t read what I wrote. Six
months ago I brought my issues to the vendors, CERT, the IPMI community; while
everyone was polite it didn’t seem to accomplish a lot55.

I’ve done a lot of work on IPMI since version one, and I’m more confident than ever that
the situation is much worse. As predicted, a muted response. I’ve heard essentially
nothing from the IPMI community. Vendors have ignored it as well, although they’re
starting to patch some of the purely bug-related problems.

Ah well, c’est la vie – I wish us all the best of luck, it’ll sort itself out one way or another.

– dan farmer, Seattle, August 16th, 2013

Bibliography

An updated or live version of the bibliography may be found here. I’ve also some
additional details and pointers on my main IPMI page, which should also have the latest
and greatest version of this paper. I'm refraining from vendor-specific items unless
they're of particular note.

I’d like to thank….

DARPA’s Fast Track Program helped me do some initial research on IPMI, funding 4-5
months of invaluable research time on the subject. A big thanks to all on that program
(and especially Peiter Zatko, aka Mudge.)

I got invaluable help from a few individuals as well – thank you! Alphabetically:

• Hank Bruning – President of Jblade. Hank had some great commentary on the

piece as well as having some real numbers and utilization data.
• Jarrod B Johnson – Raleigh/IBM@IBMUS. For telling me about the dangers of

Cipher Zero as well as passwords being stored as plaintext on the BMC; he has near
encyclopedic knowledge of the IPMI specification along with various security
implications.

• HD Moore (founder of the Metasploit project and Chief Research Officer for Rapid
7) – for his invaluable help on networking and technical stuff, as well as helping me
both test out and sharing some code.

• Jesse Robbins – co-founder of Opscode. The first person who agreed with me on
the dangers of IPMI ;) Great stories of IPMI usage in the “real world” and invaluable
sanity checking.

	 28	

• Avi Geiger – For his most excellent knowledge of low-level hardware, wiring my HP
for sniffing, cooking up the best chicken soup I’ve ever had, being a great brew
meister and better friend.

Intel gets an honorable mention for being so open to discuss the issues; I can’t mention
names, but thanks anyway, you know who you were and were a big help. Dell had the
kindness to talk to me as well and discuss some interesting issues.

And finally someone who worked in the BMC/IPMI industry engaged me in a series of
illuminating critiques and conversations over email. They asked to remain anonymous,
but thanks anyway!
	
	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 At	 least	 among	 mainstream	 operating	 systems.	 	 Any	 computer	 hooked	 up	 to	 the	 Internet	 would	 do	
well	 to	 avoid	 this.	
2	 http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-‐adopters-‐list.html	
3	 Page	 15	 of	 the	 ATEN	 user	 manual	 for	 their	 IP9001	 pcIPcard.	
4	 Version	 1.0	 had	 no	 networking	 capabilities	 and	 is	 rarely	 seen	 these	 days	 for	 obvious	 reasons.	
5	 AMT	 is	 dangerous	 but	 I	 don’t	 personally	 view	 it	 to	 be	 as	 threatening	 as	 IPMI.	 	 There	 are	 lots	 of	
reasons	 why	 I	 think	 this,	 but	 this	 paper	 is	 already	 long	 enough	 to	 go	 into	 that!	
6	 IPMI	 creates	 sessions	 tunneled	 over	 the	 UDP	 protocol,	 which	 is	 a	 connectionless	 protocol.	
7	 Cleartext	 is	 a	 phrase	 that	 means	 data	 sent	 is	 communicated	 in	 ways	 that	 are	 understandable	 by	
anyone	 watching.	 	 If	 my	 password	 were	 “Josie999”,	 then	 anyone	 that	 had	 access	 to	 the	 network	 data	
would	 see	 exactly	 that	 string	 of	 characters.	 	 Encryption	 is	 generally	 used	 to	 grant	 confidentiality	 for	
passwords	 and	 other	 data.	 	
8	 I’ll	 use	 root	 a	 lot	 in	 this	 paper,	 which	 is	 the	 name	 of	 the	 UNIX/Linux	 all-‐powerful	 administrator	
account.	 	 I	 could	 say	 administrator	 or	 whatever	 the	 system	 account	 is	 on	 your	 OS	 of	 choice,	 but	 for	
many	 root	 is	 a	 short-‐hand	 way	 to	 refer	 to	 the	 administrative	 account	 or	 having	 administrative	
privileges.	 	 IPMI	 doesn’t	 care	 what	 OS	 the	 host	 uses,	 which	 is	 part	 of	 its	 charm.	
9	 The	 free	 toolkits	 seem	 to	 have	 adopted	 Cipher	 3	 (arguably	 the	 strongest)	 as	 a	 default	 choice	 if	 a	 2.0	
connection	 is	 desired	 and	 the	 user	 doesn’t	 explicitly	 choose	 a	 cipher,	 but	 there’s	 no	 guarantee	 that	
the	 remote	 BMC	 supports	 it.	
10	 Most	 of	 the	 problems	 with	 MD5	 don’t	 necessarily	 completely	 mar	 HMAC	 protection,	 but	 MD5	
seems	 flawed	 enough	 to	 avoid	 if	 a	 better	 alternative	 is	 available,	 in	 my	 opinion.	
11	 http://csrc.nist.gov/groups/ST/hash/policy.html	
12	 I’ve	 heard	 rumors	 of	 a	 forthcoming	 patch,	 but	 it’s	 still	 true	 at	 the	 time	 of	 this	 writing.	
13	 A	 recent	 beta	 version	 of	 the	 Hashcat	 password	 guessing	 engine	 may	 be	 used	 to	 guess	 RAKP	 hashes	
and	 has	 been	 clocked	 at	 about	 20	 million	 password	 guesses	 on	 a	 single	 Intel	 core,	 making	 this	 a	
serious	 threat	 to	 any	 passwords.	
14	 The	 only	 reference	 I	 could	 find	 of	 someone	 using	 it	 was	 with	 Cacote	 &	 Masi’s	 “Using	 the	 Intelligent	
Platform	 Management	 Interface	 (IPMI)	 at	 the	 LHC	 GRID”;	 they	 describe	 machinery	 to	 create	 new	
passwords	 every	 day	 for	 every	 server,	 but	 it	 was	 only	 used	 on	 about	 2,000	 managed	 hosts,	 and	 it	
seems	 to	 involve	 some	 very	 complicated	 machinery.	
15	 For	 system	 geeks	 this	 is	 a	 fascinating	 topic	 in	 its	 own	 right.	 	 An	 SMI	 interrupt	 is	 a	 non-‐maskable	
interrupt	 that	 has	 the	 highest	 priority	 of	 anything	 on	 the	 computer.	 	 Upon	 receiving	 an	 SMI	 you’re	
dropped	 into	 SMM	 mode	 and	 the	 normally	 executing	 OS,	 kernel,	 and	 application	 code	 freezes.	 	 Code	
can	 be	 executed	 depending	 on	 the	 context	 of	 the	 interrupt,	 and	 once	 done	 SMM	 is	 exited	 and	 things	
go	 back	 to	 normal	 (this	 might	 last	 a	 few	 milliseconds,	 so	 its	 mostly	 invisible	 to	 end	 users.)	 	 To	 people	
at	 higher	 levels	 things	 can	 seemingly	 happen	 between	 CPU	 ticks	 –	 sort	 of	 a	 Matrix-‐like	 bullet	 time	 for	
servers.	 	 The	 IPMI	 spec	 says	 it	 all	 –	 it	 grants	 “full	 access	 to	 system	 memory	 and	 I/O	 space”.	 	 	 See	 the	
bibliography	 for	 more	 details.	
16	 Page	 24	 of	 the	 IPMI	 version	 2.0	 specification.	

	 29	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
17	 In	 the	 patent	 application	 “System	 ROM	 with	 an	 embedded	 disk	 image”.	
18	 “HyperSentry:	 Enabling	 Stealthy	 In-‐context	 Measurement	 of	 Hypervisor	 Integrity”;	 A.M.	 Azab	 et	 al.	 	 	 	
Unfortunately	 the	 exact	 method	 used	 to	 generate	 SMIs	 from	 the	 BMC	 was	 received	 under	 an	 NDA	
from	 IBM	 (private	 communication	 with	 A.M.	 Azab.)	
19	 The	 Linux	 kernel	 paired	 with	 the	 Busybox	 utilities	 (a	 binary	 that	 emulates	 considerable	 numbers	
of	 UNIX/Linux	 utilities	 in	 a	 stripped	 down	 and	 optimized	 fashion)	 are	 very	 popular	 in	 embedded	
systems	 in	 general	 and	 on	 the	 BMCs	 I’ve	 looked	 at.	 	 I	 hear	 that	 other	 small	 OS’s	 are	 also	 used	 on	 the	
BMC,	 but	 have	 yet	 to	 personally	 see	 one.	
20	 I’ve	 a	 small	 list	 of	 BMC	 manufacturers	 along	 with	 the	 location	 of	 their	 HQ	 and	 where	 they	 are	
physically	 made.	
21	 A	 boot	 loader	 is	 simply	 a	 little	 program	 that	 allows	 a	 computer	 to	 get	 started.	 	 The	 cleverly	 named	
Das	 U-‐Boot	 is	 very	 commonly	 seen	 in	 embedded	 systems.	
22	 It	 can	 be	 difficult	 finding	 out	 where	 the	 vendors	 stash	 their	 GPL	 code	 (if	 they	 do	 at	 all),	 but	 I’ve	
listed	 a	 few	 on	 my	 site.	
23	 Like	 Chuck	 Norris,	 the	 BMC	 doesn’t	 sleep	 –	 it	 waits.	 	 It	 still	 handles	 its	 internal	 matters,	 deals	 with	
low-‐level	 system	 business,	 and	 you	 can	 talk	 to	 it	 anytime	 you	 want.	
24	 The	 net	 is	 full	 of	 stories	 about	 how	 various	 vendor	 implementations	 of	 IPMI	 hopping	 from	 Ethernet	
adaptor	 to	 another,	 and	 being	 uncertain	 which	 one	 it	 actually	 is	 listening	 to	 even	 if	 you	 try	 to	 force	 it	
via	 configuration.	 	 IPMI	 implementations	 seem	 to	 really	 want	 to	 talk	 to	 the	 network,	 and	 since	 it	
usually	 starts	 up	 before	 the	 OS	 does	 at	 times	 it	 tries	 to	 grab	 the	 first	 network	 port	 it	 senses	 to	 be	 on.	 	
This	 can	 lead	 to	 additional	 attacker	 opportunities.	
25	 On	 my	 Supermicro	 server	 the	 passwords	 were	 stored	 in	 a	 file	 in	 the	 file	 system	 in	 plain	 sight	 -‐	
they’re	 kept	 in	 “/conf/PMConfig.dat”;	 your	 own	 mileage	 may	 vary.	
26	 UDP	 port	 664	 is	 at	 times	 used	 for	 ASF	 2.0	 Secure	 RMCP.	
27	 http://www.gnu.org/software/freeipmi/manpages/man8/rmcpping.8.html	
28	 When	 dealing	 with	 multiple	 interfaces	 Ethernet	 bonding	 is	 used	 to	 set	 up	 the	 slaves	 and	
permissions.	 	 I	 missed	 classes	 on	 bonding	 and	 embedded	 systems	 while	 growing	 up,	 apparently,	 so	
I’m	 not	 very	 conversant	 on	 this	
29For	 instance,	 to	 mount	 a	 remote	 CIFS	 –	 “mount	 -‐t	 cifs	 //10.0.0.1/media	 /tmp/mnt	 -‐o	
user=root,pass=toor”.	 	 I	 only	 put	 this	 here	 since	 there’s	 no	 discussion	 of	 it	 anywhere	 that	 I	 can	 find.	
30	 Apparently	 some	 Linux	 distros	 now	 have	 autorun	 also,	 traditionally	 a	 Windows	 feature	 that	
automatically	 executes	 code	 when	 a	 CD	 or	 other	 removable	 media	 is	 inserted.	 	 It	 might	 be	 interesting	
to	 try	 virtually	 mounting	 USB	 HID	 images	 to	 attack	 the	 keyboard.	 	
31	 Forensic	 Data	 Recovery	 from	 Flash	 Memory,	 M	 Breeuwsma	 et	 al.	 appears	 to	 among	 the	 most	 highly	
cited	 works	 on	 the	 topic,	 and	 a	 good	 read	 about	 how	 to	 recover	 such	 data.	 	 There	 are	 many	 papers,	
tools,	 and	 references	 out	 there.	
32	 Perhaps	 someone	 could	 figure	 out	 a	 way.	 	 I	 was	 not	 able	 to,	 but	 I’m	 also	 not	 an	 expert	 at	 this	 stuff.	 	
Certainly	 an	 implementer	 could	 figure	 out	 something.	 	 Maybe	 we	 could	 ask	 the	 Chinese	 to	 let	 us	
know	 their	 backdoors	 so	 we	 could	 get	 in….	 I	 kid,	 I	 kid!	 	 :)	
33	 More	 about	 this	 at	 http://fish2.com/ipmi/dell/secret.html	 	 	 	 	
34	 A	 special	 case	 of	 this	 is	 if	 you	 are	 logged	 in	 with	 administrative	 privileges	 on	 a	 server	 –	 in	 this	 case	
no	 authentication	 is	 required	 to	 execute	 IPMI	 commands	 on	 that	 box.	
35	 Monitoring	 is	 possible,	 of	 course,	 but	 typically	 done	 sporadically	 and	 for	 trouble-‐shooting	 and	
performance	 reasons,	 not	 typically	 for	 security.	
36	 Perhaps	 there	 is	 some	 large	 enterprise	 that	 can	 make	 it	 work,	 but	 the	 larger	 you	 are	 the	 harder	 it	
gets.	
37	 The	 IPMI	 specification	 has	 something	 they	 dub	 the	 “Firmware	 Firewall”,	 but	 it	 doesn’t	 have	
anything	 to	 do	 with	 networking;	 it’s	 an	 attempt	 at	 blocking	 configuration,	 messaging	 and	 write	
operations	 on	 interfaces,	 and	 appears	 to	 be	 mostly	 designed	 for	 use	 in	 big	 blade	 servers.	 	 It	 also	
seems	 pretty	 worthless	 (it’s	 complex,	 no	 examples	 exist	 in	 the	 world,	 and	 no	 software	 to	 test	 or	 audit	
the	 configuration,	 etc.),	 but	 perhaps	 it’s	 used	 somewhere.	 	
38	 This	 is	 an	 unfortunate	 by	 product	 of	 the	 IPMI	 specification,	 which	 sometimes	 says	 you	 have	 to	 use	
or	 send	 the	 password	 in	 unencrypted	 form.	 	 Some	 vendors	 put	 up	 a	 fight	 here,	 and	 try	 to	 block	

	 30	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
sections	 of	 the	 ROM	 from	 casual	 reading,	 or	 semi-‐encrypt	 the	 passwords	 and	 extract	 them	 at	
runtime,	 but	 an	 attacker	 can	 still	 capturing	 the	 BMC’s	 RAM	 or	 reverse	 engineering	 the	 boot	 process	
to	 reveal	 them.	 	 Admittedly	 with	 limited	 experience,	 but	 it	 seems	 simple	 to	 access	 the	 IPMI	
passwords	 once	 on	 the	 BMC.	
39	 See	 my	 web	 site	 for	 an	 enumeration	 of	 at	 least	 some	 of	 the	 methods.	 	 And	 compromising	 a	 server	
by	 physically	 attacking	 it	 is	 only	 cheating	 if	 it	 only	 grants	 you	 access	 to	 that	 single	 computer,	 not	
thousands	 of	 others.	 	
40	 I’m	 actually	 not	 facetious	 here	 –	 there	 are	 many	 times	 in	 the	 protocol	 where	 the	 user	 experience	 is	
cited	 as	 a	 reason	 for	 certain	 designs,	 which	 I	 thought	 was	 wonderful,	 as	 you	 almost	 never	 see	 this.	
Unfortunately,	 they	 went	 a	 bit	 overboard	 at	 times.	
41	 The	 BMC	 has	 the	 potential	 to	 read	 and	 write	 directly	 to	 them	 as	 well.	
42	 It	 appears	 that	 some	 vendors	 try	 to	 put	 a	 hard-‐coded	 wall	 between	 the	 server	 and	 the	 BMC	 to	
disallow	 server-‐to-‐BMC	 network	 communications.	 	 If	 this	 can’t	 be	 circumvented,	 an	 attacker	 may	
simply	 talk	 to	 the	 BMC	 from	 a	 2nd	 accomplice	 computer	 after	 changing	 the	 BMCs	 network	 address.	
43	 These	 hyper-‐crucial,	 crown-‐jewelesque,	 super-‐back	 end	 types	 of	 assets	 also	 have	 some	 of	 the	 worst	
security	 in	 your	 environment.	 	 I	 wrote	 an	 essay	 about	 this	 that	 may	 be	 found	 at	
http://trouble.org/?p=262.	
44	 Unlike	 regular	 hard	 drives	 flash	 memory	 can	 only	 be	 written	 to	 a	 fairly	 small	 amount	 of	 times	
before	 failing.	 	 It	 might	 be	 possible	 to	 kill	 off	 a	 BMC	 with	 a	 lot	 of	 brute	 force	 writing,	 but	 with	 the	
implementation	 details	 so	 scarce	 I	 wouldn’t	 count	 on	 it	 to	 be	 a	 reliable	 way.	 	 A	 small	 nail	 and	 a	
ballpeen	 hammer	 might	 be	 effective	 at	 killing	 the	 BMC,	 but	 who	 knows	 if	 that’d	 kill	 off	 any	 server	
functionally	 –	 the	 Southbridge	 and	 BMC	 have	 an	 odd	 relationship	 and	 it	 might	 have	 undesired	
consequences.	 	 Some	 vendors	 may	 have	 a	 setting	 to	 really	 disable	 the	 BMC.	
45	 This	 is	 in	 part	 because	 of	 the	 intertwined	 nature	 of	 IPMI	 and	 the	 server	 combined	 with	 the	 brittle	
nature	 of	 the	 BMC	 architecture	 and	 security	 model.	 	 Root	 accounts	 on	 a	 server	 can	 create	 local	
administrative	 IPMI	 accounts	 without	 any	 additional	 authentication.	 	 The	 most	 straightforward	 way	
is	 to	 simply	 reboot	 the	 system	 onto	 media	 of	 your	 choice	 and	 mount	 the	 local	 drives;	 you	 may	 then	
install	 a	 new	 account,	 a	 new	 OS,	 or	 do	 whatever	 you	 wish	 –	 after	 all,	 provisioning	 servers	 is	 one	 of	 the	
basic	 uses	 of	 IPMI.	
46	 This	 is	 definitely	 true	 if	 you	 have	 compromised	 the	 BMC,	 and	 possibly	 true	 if	 you	 simply	 have	 IPMI	
control,	 depending	 on	 your	 server	 vendor	 as	 well	 as	 how	 you	 run	 your	 network	 and	 manage	 IPMI.	 	 If	
you	 use	 a	 dedicated,	 IPMI-‐only	 management	 ethernet	 jack	 on	 your	 server	 I	 don’t	 know	 of	 a	 way	 for	 a	
server	 to	 communicate	 with	 that	 interface.	 	 But	 if	 you	 share	 physical	 connections	 or	 use	 a	 network	
interface	 that	 the	 server	 can	 access	 then	 this	 is	 true	 in	 general	 as	 well.	
47	 Pretty	 much	 everyone	 can	 run	 our	 old	 friend	 telnet	 along	 with	 SSH,	 VNC,	 web	 (http/https),	 email,	
the	 IPMI	 protocol	 itself	 as	 well	 as	 a	 variety	 of	 custom	 programs	 to	 serve	 remote	 virtual	 media	 along	
with	 other	 IPMI	 custom	 services.	 	 They	 are	 almost	 always	 daemons	 or	 agents	 are	 running	 on	 the	
BMC.	
48	 It’s	 mandatory	 to	 keep	 embedded	 systems	 rock	 solid	 and	 stable	 because	 of	 the	 difficulties	 of	
patching	 and	 maintenance,	 so	 vendors	 don’t	 want	 to	 mess	 with	 anything	 once	 they	 reach	 a	 stable	
state	 unless	 they	 deem	 the	 problem	 critical.	 	 Security	 issues,	 if	 patched	 at	 all,	 will	 usually	 be	 rolled	
out	 in	 the	 next	 normal	 maintenance	 release;	 the	 patch	 notes	 won’t	 usually	 mention	 security	 but	 will	
focus	 on	 features	 or	 perhaps	 mention	 stability	 or	 some	 other	 veiled	 phrase.	
49	 There	 are	 more	 details	 about	 this	 in	 section	 3.	 	 I	 assume	 that	 this	 is	 because	 vendor	 probably	
realized	 that	 you	 don’t	 want	 people	 reading	 those	 passwords,	 and	 attempt	 to	 block	 you	 from	 reading	
the	 flash	 storage	 or	 mucking	 with	 the	 IPMI	 subsystem.	 	 This	 also	 means	 that	 you	 can’t	 make	 backups	
of	 your	 flash	 or	 tell	 if	 it’s	 been	 modified,	 as	 a	 compromised	 BMC	 can	 simply	 say	 what	 you’re	 expecting	
or	 wanting	 to	 hear.	
50	 At	 least	 as	 it	 stands	 today;	 this	 will	 presumably	 change	 over	 time	 as	 people	 gain	 more	 exposure	 to	
IPMI	 issues,	 tools	 and	 procedures	 get	 developed,	 vendors	 change,	 etc.	 	 Even	 if	 any	 forensic	 tools	 or	
methodologies	 existed	 for	 BMCs	 you	 couldn’t	 use	 them	 unless	 you	 could	 login	 to	 the	 BMC	 to	 kick	 the	
virtual	 tires.	
51	 When	 communicating	 to	 BMCs	 software	 as	 software	 goes	 from	 IPMI	 version	 2.0	 (sometimes	
encrypted)	 to	 version	 1.5	 (never	 encrypted)	 or	 when	 using	 various	 vendor	 services	 you’ll	 get	

	 31	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
encryption	 sometimes.	 	 It’s	 usually	 hidden,	 undocumented,	 or	 you	 have	 to	 hunt	 to	 figure	 it	 out	 (or	
drag	 out	 the	 packet	 sniffer.)	
52	 This	 is	 a	 presumption	 on	 my	 part,	 based	 on	 the	 evidence	 I’ve	 gathered	 so	 far.	 	 At	 least	 some	 of	 the	
data	 may	 be	 sniffed;	 but	 in	 an	 out	 of	 the	 box	 install	 not	 all	 servers	 allow	 network	 monitoring	 from	 the	
server	 to	 the	 BMC	 or	 vice-‐versa.	 Data	 is	 admittedly	 in	 seriously	 short	 supply	 for	 me	 here.	 	 However,	 I	
have	 been	 able	 to	 watch	 the	 BMC	 from	 a	 Dell	 server,	 and	 it	 seems	 a	 foregone	 conclusion	 that	 given	
the	 BMC’s	 power	 listening	 to	 the	 server’s	 network	 traffic	 would	 be	 fairly	 straightforward.	 	 It	 could	 be	
a	 matter	 of	 changing	 network	 or	 kernel	 settings,	 the	 network	 card’s	 firmware	 or	 configuration,	 or	
perhaps	 even	 that	 some	 vendors	 have	 figured	 a	 way	 to	 really	 separate	 the	 two.	 	 I’ve	 written	 a	 bit	
more	 about	 this	 on	 my	 web	 site.	
53	 A	 zero	 day	 exploit	 is	 when	 an	 attack	 exploits	 a	 previous	 unfixed	 or	 unknown	 security	 problem	 that	
leads	 to	 a	 system	 compromise.	 	 Once	 it	 is	 finally	 reported	 to	 the	 vendor	 (or,	 conversely,	 to	 the	 larger	
public)	 the	 clock	 can	 start	 ticking	 to	 fix	 or	 address	 the	 problem.	 	 	 Bruce	 Schneier	 wrote	 a	 nice	 piece	 in	
Forbes	 about	 the	 economics	 and	 ethics	 of	 zero	 day	 exploits.	
54	 One	 of	 their	 write-‐ups,	 a	 guide	 for	 penetration	 testers,	 covers	 some	 of	 the	 more	 pressing	 main	
technical	 issues.	 	
55	 I	 saw	 that	 CERT	 just	 put	 out	 an	 advisory	 on	 this;	 they	 didn’t	 want	 to	 when	 I	 first	 told	 them,	 I	 guess	
someone	 convinced	 them.	

