
without disturbing it

Examining a process

Feb 13 23:09:52 wsbs06 in.fingerd[15900]:

TCP Wrapper-style alert

.

Screen saver accounts don’t finger around at midnight.

. . . and possibly more.

�

�

� Suspicious activity at some unlikely hour:

An intruder has compromised the screen saver account

connect from lock@wsbs03

Bad news - compromised machine

.

�

Feb 13 23:05:34 wsbs01 in.fingerd[7948]:

connect from root@wsbs03

Feb 13 23:05:35 wsbs06 in.fingerd[15895]:

connect from nobody@wsbs01

Feb 13 23:05:36 wsbs06 in.fingerd[15897]:

Someone is a finger-command virtuoso.�

refused connect from nobody@localhost

Someone compromised the root account on host wsbs03.

finger @localhost@wsbs06@wsbs01

wsbs06 wsbs01 wsbs03

. . .

Evidence of suspicious process

.

root 0 0.0 0.0 0 0 ? D Jan 14 0:01 swapper

USER PID %CPU %MEM SZ RSS TT STAT START TIME COMMAND

root 12823 0.0 0.0 48 0 ? IW 23:02 0:00 <defunct>

root 1 0.0 0.0 52 0 ? IW Jan 14 0:00 /sbin/init -

�

� Process name: misleading to hide real purpose.

Process start time: matches time of incident.

ps aux

root 2 0.0 0.0 0 0 ? D Jan 14 0:00 pagedaemon

root 75 0.0 0.0 16 0 ? I Jan 14 0:00 (biod)

root 55 0.0 0.0 68 0 ? IW Jan 14 0:00 portmap

. . .

. . .

.

ps incantations (BSD-ish UNIX)

� "ps ax" for basic listing.

"ps auxeww" for command, environment, and more.�

. . .
MAIL=/var/spool/mail/wietse SHELL=/bin/csh TERM=xterm (csh)
/usr/ucb:/usr/bin/X11:/usr/local/bin:/usr/local/bin
HOME=/home/wietse USER=wietse LOGNAME=wietse PATH=/bin:/usr/bin:
wietse 152 0.0 1.5 56 212 p0 S 09:12 0:00 -csh

USER PID %CPU %MEM SZ RSS TT STAT START TIME COMMAND

883 p0 R 0:00 ps ax
152 p0 S 0:00 -csh (csh)

PID TT STAT TIME COMMAND

. . .

. . .

. . .

.

Will the real ps command stand up?

� System V-ish UNIX: "ps -ef" for minimally-useful listing.

. . .

System V-ish UNIX: "ps -ealf" gives marginally more.�

 UID PID PPID C STIME TTY TIME COMD

wietse 9157 9154 24 12:57:58 pts/0 0:00 -csh
wietse 9184 9157 21 13:00:43 pts/0 0:00 ps -ef

F S UID PID PPID C PRI NI ADDR SZ WCHAN STIME TTY TIME COMD
. . .

8 S wietse 9157 9154 25 41 20 fc52bcc0 218 fc52be90 12:57:58 pts/0 0:00 -csh

8 O wietse 9204 9157 21 55 20 fc52b000 173 13:13:03 pts/0 0:00 ps -ealf

. . .

No executable file found (find /var -inum 868676 -print).

lsof - list open files, connections etc.

.

<defunct> 12823 root 3u inet 0xff64b50c 0x0 TCP *:5120

Source: ftp://vic.cc.purdue.edu/pub/tools/unix/lsof�

COMMAND PID USER FD TYPE DEVICE SIZE/OFF INODE NAME

<defunct> 12823 root cwd VDIR 7, 22 1024 868362 /var

<defunct> 12823 root T00 VREG 7, 22 32768 868676 /var

<defunct> 12823 root T01 VREG 7, 6 24576 139429 /usr

<defunct> 12823 root T02 VREG 7, 6 516096 139397 /usr

<defunct> 12823 root T03 VREG 7, 0 4096 14951 /

<defunct> 12823 root T04 VREG 7, 6 40960 139492 /usr

lsof -p 12823

� Something is accepting connections on TCP port 5120.

�

12823 ? TW 0:00 <defunct>

Freezing the process

.

Suspend the process until we have figured out what it is:�

� Don’t connect to the port - bad things might happen.

Don’t terminate the process - all info would be lost.�

kill -STOP 12823

� Checking the result reveals yet another surprise.

 167 ? TW 0:11 cron (cron is suspended, too)
ps ax|grep T

direction of growth of stack segment

Capturing process memory - intro

.

program code and constants (from program file)
program variables (saved in core dump)

start

Simplified typical process memory map, not drawn to scale

stack (saved in core dump)
end

shared library code and constants (from lib. files)
shared library variables (saved in core dump)

direction of growth of data segment

gcore is not available on LINUX (but alternatives exist).

ls -l core.12832
gcore: core.12832 dumped

-rw-r--r-- 1 root 8421808 Feb 24 09:29 core.12832

Capturing process data - gcore

.

�

�

Create "core dump" checkpoint of variables and stack.

Example: core dump checkpoint of process 12832

� Result can be examined with standard debugger tools,
given copies of the program and shared library files.

� Result can be examined with unstructured tools such
as "strings", binary editors, etc.

�

gcore 12832

the memory map has holes in it (see the "pcat" utility)..

Capturing process info - /proc

Entries in /proc/<pid> give access to process info.�

Capturing the program file is as simple as copying
/proc/<pid>/file (or whatever they call it today).

�

� Capturing process memory requires more work because

Solaris
object/a.out

...

FreeBSD
file

...

LINUX
exe

...

what
program file

etcetera...
map map maps memory map
as mem mem process memory

�

Capturing the program file - icat

.

�

Recover deleted but still open or running files.

icat - retrieve file, given device name and inode number.

�

� Part of the software developed for this class.

� Example: save contents of file 868676 on /dev/sd2g.
icat /dev/rsd2g 868676 >868676.out

unstructured tools such as "strings", binary editors, etc.
Result can be examined with standard debuggers and with

Capturing process memory - pcat

.

Dump the entire memory of a process to file - �

including code, data, heap, libraries and stack.

� Part of the toolkit developed for this class.

Example: dump all memory of process 12832.�

pcat 12832 >pcat.12832

Result can be examined with unstructured tools such�

as "strings", binary editor, etc.

telnetd: %s.

First examination with "strings"

.

strings core.12832 | more

...more stuff...

..stuff...
Error: cant open file
kill
Error: cant open file
%s not found
bad port %s
Trying %s...
telcli: socket
:) %s port %d...
csh -bif
exec
pqrstuvwxyzPQRST
/dev/ptyXX
/dev/pty
/dev/ptyp
0123456789abcdef
/bin/csh
/dev/
/dev/tty
fork
/bin/csh

shell
process

telnet
client

Backdoor service (portd variant)

victim#

Stand-alone telnet server.�

� Bypass TCP Wrapper and system login procedure.

intruder

compromised machine

SunOS UNIX (victim)

password
Escape character is ’^]’.
Connected to victim.
Trying 131.155.210.17...
% telnet victim 5120

portd
server

application
library
kernel

hardware

user

Watching a process in action - intro

.

Run-time tracing can impact performance noticeably.�

Use standard debugging hooks to intercept and log:�

� Run-time tracing can generate large amounts of data.

Individual machine instructions.�

Individual application routines (requires program file).�

Library calls (tapping the application-library interface).�

System calls (tapping the user-kernel interface).�

Kranenburg, ported and extended by many.

Watching system calls

.

� User-kernel interface: does not show what happens
inside the application or inside library routines.

�

system call: input, output, network, file, terminal, etc.

Many system-specific tools: trace (SunOS 4), truss
(Solaris 2), ktrace (*BSD), etc.

�

Portable system call tracer: strace, originally by Paul�

All information must enter or leave the program via a

cleartext
Network:
encrypted

12345

Syscall tracing to decrypt traffic

.

-f

-e trace=read,write

-e read=6

-e write=4

watch process 12345
and its child processes

show everyting read from ch. 6
show everything written to ch. 4

look at read/write calls only

strace -p 12345

4 Local:

6

Guaranteed portable to SUNs.

Other host-based tracing

.

� ttywatcher: real-time monitoring and more.
ftp://coast.cs.purdue.edu/pub/tools/unix/ttywatcher/
tap: hook into streams-based tty systems.
ftp://coast.cs.purdue.edu/pub/tools/unix/tap/

ftp://ftp.debian.org/debian/dists/unstable/main/source/utils/
ltrace: log every library routine call (output like strace).�

Guaranteed portable to LINUX.

� The uncensored logdaemon utilities.

Spying on an intruder without being seen.

Hiding a process from observation

.

�

�

�

Other forms of surveillance.

�

�

Otherwise, retrofitted by hacking system software.

Standard B2+ security feature (covert channels).

Hiding a password sniffer process.

Hiding a process from observation

.

installed as privileged commands.

Modified ps/lsof/top/etc. applications and/or library routines.�

Can be sufficient when process listing applications must be

application
library
kernel

hardware

user

Modified kernel: crude implementations based on
loadable kernel modules from http://thc.pimmel.com/

�

Hides a process even from the most privileged users.

� Can’t use lots of CPU, memory or I/O resources.

